Latex语法

latex就是一个方便编辑数学公式的一个库,简单汇总一下他的用法。

Latex介绍

  • Donald为了更好的在他的著作里编写数学公式,发明了Tex这种宏语言,专门排版数学公式。Leslie封装了Tex,并自定义了更多的宏指令,成为了LaTeX。现在是国际通用的排版系统,很多论文收稿的排版要求都是LaTex,word是不接收的。
  • 妈咪说公布了一个在线的公式编辑的网站,生成latex更方便了,非常好用:www.latexlive.com

基本语法

  • LaTex Math的语法多且杂,我们是没法完全记住这些语法的。查询手册在手,天下我有,这里比较推荐名校莱斯Rice大学的一个语法手册,莱斯大学LaTex Math在线PDF手册

排版格式

  • 行内公式排版:左右$好像不能有空格
$c = \sqrt{a^{2}+b_{xy}^{2}+e^{x}}$

c=a2+bxy2+exc = \sqrt{a^{2}+b_{xy}^{2}+e^{x}}

  • 块公式排版:
$$ c = \sqrt{a^{2}+b_{xy}^{2} +e^{x}} $$

c=a2+bxy2+exc = \sqrt{a^{2}+b_{xy}^{2} +e^{x}}

转义

  • 以下几个字符:# $ % & ~ _ ^ \ { }有特殊意义,需要表示这些字符时,需要转义,即在每个字符前加上\
  • \boxed命令给公式加一个方框。

希腊字母

  • 希腊字母有大写和小写之分,这个大小写是由LaTex的首字母是否大小写来控制的。
希腊字母 LaTeX形式
αA\alpha \Alpha \alpha \Alpha
βB\beta \Beta \beta \Beta
γΓ\gamma \Gamma \gamma \Gamma
δΔ\delta \Delta \delta \Delta
ϵεE\epsilon \varepsilon \Epsilon \epsilon \varepsilon \Epsilon
ζZ\zeta \Zeta \zeta \Zeta
ηH\eta \Eta \eta \Eta
θϑΘ\theta \vartheta \Theta \theta \vartheta \Theta
ιI\iota \Iota \iota \Iota
κK\kappa \Kappa \kappa \Kappa
λΛ\lambda \Lambda \lambda \Lambda
μM\mu M \mu \Mu
ξΞ\xi \Xi \xi \Xi
o O o O
πΠ\pi \Pi \pi \Pi
ρϱP\rho \varrho \Rho \rho \varrho \Rho
σΣ\sigma \Sigma \sigma \Sigma
ττ\tau \tau \tau \Tau
υΥ\upsilon \Upsilon \upsilon \Upsilon
ϕφΦ\phi \varphi \Phi \phi \varphi \Phi
χX\chi \Chi \chi \Chi
ψΨ\psi \Psi \psi \Psi
ωΩ\omega \Omega \omega \Omega

上下标

  • 上下标如果多余一个字符或符号,需要用{}括起来。
符号 LaTex形式
x1x^1 x^1
x1x_1 x_1

根号

  • 形式:\sqrt[开方次数,默认为2]{开方公式}
符号 LaTex形式
xij2xx3x_{ij}^2\quad \sqrt{x}\quad \sqrt[3]{x} x_{ij}^2\quad \sqrt{x}\quad \sqrt[3]{x}
  • \quad表示添加空格,或者\;

分数

  • \frac表示分数,
  • 字号工具环境设置:
    • \dfrac命令把字号设置为独立公式中的大小;
    • \tfrac则把字号设置为行间公式中的大小。
符号 LaTex形式
1212\frac{1}{2} \dfrac{1}{2} \frac{1}{2} \dfrac{1}{2}
1212\frac{1}{2} \tfrac{1}{2} \frac{1}{2} \tfrac{1}{2}

三角函数、对数、指数

符号 LaTex形式
tan\tan \tan
sin\sin \sin
cos\cos \cos
lg\lg \lg
arcsin\arcsin \arcsin
arctan\arctan \arctan
min\min \min
max\max \max
exp\exp \exp
log\log \log

运算符

简单的四则运算

  • + - * / = 直接输入

集合符号

  • 特殊运算则用以下特殊命令
符号 LaTex形式
1±11\pm1 \pm
×\times \times
÷\div \div
\cdot \cdot
\cap \cap
\cup \cup
\geq \geq
\leq \leq
\neq \neq
\approx \approx
\equiv \equiv
\in \in
\notin \notin
\ni \ni
\subset \subset

和、积、极限、积分

  • 和、积、极限、积分等运算符,这些公式在行内公式被压缩,以适应行高,可以通过\limits\nolimits命令显示制动是否压缩
符号 LaTex形式
\sum \sum
\prod \prod
lim\lim \lim
\int \int

多重积分

符号 LaTex形式
\int \int
\iint \iint
\int \int \int \int
\iiint \iiint
\int \int \int \int \int \int
\iiiint \iiiint
\int \int \int \int \int \int \int \int
\idotsint \idotsint
 ⁣\int \dots \int \int \dots \int

箭头

符号 LaTex形式
\leftarrow \leftarrow
\rightarrow \rightarrow
\leftrightarrow \leftrightarrow
\longleftarrow \longleftarrow
\longleftrightarrow \longleftrightarrow
\Longrightarrow \Longrightarrow
  • \xleftarrow\xrightarrow可根据内容自动调整

注音和标注

符号 LaTex形式
xˉ\bar{x} \bar{x}
xˊ\acute{x} \acute{x}
x˚\mathring{x} \mathring{x}
x\vec{x} \vec{x}
xˋ\grave{x} \grave{x}
x˙\dot{x} \dot{x}
x^\hat{x} \hat{x}
x~\tilde{x} \tilde{x}
x¨\ddot{x} \ddot{x}
xˇ\check{x} \check{x}
x˘\breve{x} \breve{x}
\dddot{x} \dddot{x}

括号

  • () [] {} \lange \rangle表示 () [] {} ⟨⟩

分隔符

符号 LaTex形式
xxx\overline{xxx} \overline{xxx}
xxx\overleftrightarrow{xxx} \overleftrightarrow{xxx}
xxx\underline{xxx} \underline{xxx}
xxx\underleftrightarrow{xxx} \underleftrightarrow{xxx}
xxx\overleftarrow{xxx} \overleftarrow{xxx}
xxx\overbrace{xxx} \overbrace{xxx}
xxx\underleftarrow{xxx} \underleftarrow{xxx}
xxx\underbrace{xxx} \underbrace{xxx}
xxx\overrightarrow{xxx} \overrightarrow{xxx}
xxx^\widehat{xxx} \widehat{xxx}
xxx\underrightarrow{xxx} \underrightarrow{xxx}
xxx~\widetilde{xxx} \widetilde{xxx}
(((((x)))))\Bigg( \bigg( \Big( \big((x) \big) \Big) \bigg) \Bigg) $\Bigg( \bigg( \Big( \big((x) \big) \Big) \bigg) \Bigg)$
[[[[[x]]]]]\Bigg[ \bigg[ \Big[ \big[[x] \big] \Big] \bigg] \Bigg] $\Bigg[ \bigg[ \Big[ \big[[x] \big] \Big] \bigg] \Bigg]$
{{{{{x}}}}}\Bigg\{ \bigg\{ \Big\{ \big\{\{x\} \big\} \Big\} \bigg\} \Bigg\} $\Bigg\{ \bigg\{ \Big\{ \big\{\{x\} \big\} \Big\} \bigg\} \Bigg\}$
x\Bigg\langle \bigg\langle \Big\langle \big\langle\langle x \rangle \big\rangle \Big\rangle \bigg\rangle \Bigg\rangle $\Bigg\langle \bigg\langle \Big\langle \big\langle\langle x \rangle \big\rangle \Big\rangle \bigg\rangle \Bigg\rangle$
x\Bigg\lvert \bigg\lvert \Big\lvert \big\lvert\lvert x \rvert \big\rvert \Big\rvert \bigg\rvert \Bigg\rvert $\Bigg\lvert \bigg\lvert \Big\lvert \big\lvert\lvert x \rvert \big\rvert \Big\rvert \bigg\rvert \Bigg\rvert$
x\Bigg\lVert\bigg\lVert\Big\lVert\big\lVert\lVert x \rVert \big\rVert\Big\rVert\bigg\rVert \Bigg\rVert $\Bigg\lVert\big\lVert \Big\lVert \big\lVert \lVert x \rVert \big\rVert \Big\rVert \bigg\rVert \Bigg\rVert$

省略号

  • 省略号用 \dots \cdots \vdots \ddots表示 ,\dots和\cdots的纵向位置不同,前者一般用于有下标的序列
符号 LaTex形式
\dots \dots
\cdots \cdots
\vdots \vdots
\ddots \ddots

x1,x2,,xn1,2,,nx_1, x_2, \dots, x_n\quad 1,2,\cdots,n\quad \vdots\quad \ddots

空白间距

语法 格式 实例 显示
quad空格 a \quad b aba \quad b
两个quad空格 a \qquad b aba \qquad b 两个m的宽度
大空格 a \: b aba \: b 1/3m宽度
中等空格 a \; b a  ba \; b 2/7m宽度
小空格 a \, b aba \, b 1/6m宽度
没有空格 ab abab 没有空格
缩进空格 a \! b a ⁣ba \! b 缩进1/6m宽度

复杂公式

  • 分段函数是非常复杂的,这时候会用到LaTexcases语法,用\begin{cases}\end{cases}围住即可,中间则用\\来分段

矩阵

x1x2x3x4\begin{array}{ccc} x_1 & x_2 &\dots\\ x_3 & x_4 &\dots\\ \vdots&\vdots&\ddots \end{array}

$$
\begin{array}{ccc}
x_1 & x_2 &\dots\\
x_3 & x_4 &\dots\\
\vdots&\vdots&\ddots
\end{array}
$$

(abcd)[abcd]{abcd}abcdabcd\begin{pmatrix} a & b\\ c & d \\ \end{pmatrix} \quad \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} \quad \begin{Bmatrix} a & b \\ c & d \\ \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \quad \begin{Vmatrix} a & b \\ c & d \\ \end{Vmatrix}

$$
\begin{pmatrix}
a & b\\
c & d \\
\end{pmatrix}
\quad
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}
\quad
\begin{Bmatrix}
a & b \\
c & d \\
\end{Bmatrix}
\quad
\begin{vmatrix}
a & b \\
c & d \\
\end{vmatrix}
\quad
\begin{Vmatrix}
a & b \\
c & d \\
\end{Vmatrix}
$$
( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} )
$$
(
\begin{smallmatrix}
a & b \\
c & d
\end{smallmatrix}
)
$$

长公式

  • 无需对齐可使用multline;需要对齐使用split;用\\来分行;用&设置对齐的位置
\begin{multline} x = a+b+c+{} \\ d+e+f+g \end{multline}
$$
\begin{multline}
x = a+b+c+{} \\
d+e+f+g
\end{multline}
$$
\begin{split} x = {} & a + b + c +{}\\ & d + e + f + g \end{split}
$$
\begin{split}
x = {} & a + b + c +{}\\
& d + e + f + g
\end{split}
$$

公式组

  • 不需要对齐的公式组用gather;需要对齐使用align:
\begin{gather} a = b+c+d\\ x = y+z\\ 5 = 4+1\\ \end{gather}
$$
\begin{gather}
a = b+c+d\\
x = y+z\\
5 = 4+1\\
\end{gather}
$$
\begin{align} a &=b+c+d \\ x &=y+z\\ 5 &= 4+1 \end{align}
$$
\begin{align}
a &=b+c+d \\
x &=y+z\\
5 &= 4+1
\end{align}
$$

分支公式

  • 分段函数通常用cases次环境携程分支公式

y={x,x0x,x>0y=\begin{cases} -x,\quad x\leq 0\\ x, \quad x>0 \end{cases}

$$
y=\begin{cases}
-x,\quad x\leq 0\\
x, \quad x>0
\end{cases}
$$

定理、引理、证明、假设

定理
\newtheorem{thm}{\bf Theorem}[section] \begin{thm}\label{thm1} Suppose system (\ref{l1}) satisfies Assumption (\ref{mim1}), the closed-loop system consisting of system (\ref{l1}), the disturbance observer (\ref{g1}) and the proposed controller (\ref{n3}) is semi-globally ISS. \end{thm}
$$
\newtheorem{thm}{\bf Theorem}[section]
\begin{thm}\label{thm1}
Suppose system (\ref{l1}) satisfies Assumption (\ref{mim1}), the closed-loop system consisting of
system (\ref{l1}), the disturbance observer (\ref{g1}) and the proposed controller (\ref{n3}) is semi-globally ISS.
\end{thm}
$$
引理
\newtheorem{lemma}{Lemma}[section] \begin{lemma} \label{lemma1} \end{lemma}
$$
\newtheorem{lemma}{Lemma}[section]
\begin{lemma} \label{lemma1}
\end{lemma}
$$
证明
\begin{proof} *** \end{proof}
$$
\begin{proof}
***
\end{proof}
$$
假设
\newtheorem{assumption}{Assumption}[section] \begin{assumption} *** \end{assumption}
$$
\newtheorem{assumption}{Assumption}[section]
\begin{assumption}
***
\end{assumption}
$$

常用指令汇总

常用符号

二元运算符 Binary operations

tag latex descript
++ +
- -
×\times \times
÷{\div} {\div}
±\pm \pm 加减
\mp \mp 减加
\triangleleft \triangleleft 正规子群
\triangleright \triangleright 属于正规子群
\cdot \cdot
\setminus \setminus 减号集
\star \star
\ast \ast 星号
\cup \cup 并集
\cap \cap 交集
\sqcup \sqcup -
\sqcap \sqcap -
\vee \vee -
\wedge \wedge -
\circ \circ -
\bullet \bullet -
\oplus \oplus -
\ominus \ominus -
\odot \odot -
\oslash \oslash -
\otimes \otimes -
\bigcirc \bigcirc -
\diamond \diamond -
\uplus \uplus -
\bigtriangleup \bigtriangleup -
\bigtriangledown \bigtriangledown -
\lhd \lhd -
\rhd \rhd -
\unlhd \unlhd -
\unrhd \unrhd -
⨿\amalg \amalg -
\wr \wr -
\dagger \dagger -
\ddagger \ddagger -

二元关系符 Binary relations

tag latex descript
<< < -
>> > -
== = -
\le \le -
\ge \ge -
\equiv \equiv -
\ll \ll -
\gg \gg -
\doteq \doteq -
\triangleq \triangleq -
\prec \prec -
\succ \succ -
\sim \sim -
\preceq \preceq -
\succeq \succeq -
\simeq \simeq -
\approx \approx -
\subset \subset -
\supset \supset -
\subseteq \subseteq -
\supseteq \supseteq -
\sqsubset \sqsubset -
\sqsupset \sqsupset -
\sqsubseteq \sqsubseteq -
\sqsupseteq \sqsupseteq -
\cong \cong -
\Join \Join -
\bowtie \bowtie -
\propto \propto -
\in \in -
\ni \ni -
\vdash \vdash -
\dashv \dashv -
\models \models -
\mid \mid -
\parallel \parallel -
\perp \perp -
\smile \smile -
\frown \frown -
\asymp \asymp -
:: : -
\notin \notin -
\ne \ne -

箭头符号 Arrows

tag latex descript
\gets \gets -
\to \to -
\longleftarrow \longleftarrow -
\longrightarrow \longrightarrow -
\uparrow \uparrow -
\downarrow \downarrow -
\updownarrow \updownarrow -
\leftrightarrow \leftrightarrow -
\Uparrow \Uparrow -
\Downarrow \Downarrow -
\Updownarrow \Updownarrow -
\longleftrightarrow \longleftrightarrow -
\Leftarrow \Leftarrow -
\Longleftarrow \Longleftarrow -
\Rightarrow \Rightarrow -
\Longrightarrow \Longrightarrow -
\Leftrightarrow \Leftrightarrow -
\Longleftrightarrow \Longleftrightarrow -
\mapsto \mapsto -
\longmapsto \longmapsto -
\nearrow \nearrow -
\searrow \searrow -
\swarrow \swarrow -
\nwarrow \nwarrow -
\hookleftarrow \hookleftarrow -
\hookrightarrow \hookrightarrow -
\rightleftharpoons \rightleftharpoons -
    \iff \iff -
\leftharpoonup \leftharpoonup -
\rightharpoonup \rightharpoonup -
\leftharpoondown \leftharpoondown -
\rightharpoondown \rightharpoondown -

其他符号 Others

tag latex descript
\because \because -
\therefore \therefore -
\dots \dots -
\cdots \cdots -
\vdots \vdots -
\ddots \ddots -
\forall \forall -
\exists \exists -
\nexists \nexists -
\Finv \Finv -
¬\neg \neg -
\prime \prime -
\emptyset \emptyset -
\infty \infty -
\nabla \nabla -
\triangle \triangle -
\Box \Box -
\Diamond \Diamond -
\bot \bot -
\top \top -
\angle \angle -
\measuredangle \measuredangle -
\sphericalangle \sphericalangle -
\surd \surd -
\diamondsuit \diamondsuit -
\heartsuit \heartsuit -
\clubsuit \clubsuit -
\spadesuit \spadesuit -
\flat \flat -
\natural \natural -
\sharp \sharp -

希腊字母

tag latex descript
α\alpha \alpha alpha
β\beta \beta beta
γ\gamma \gamma gamma
δ\delta \delta delta
ϵ\epsilon \epsilon epsilon
ε\varepsilon \varepsilon epsilon
ζ\zeta \zeta zeta
η\eta \eta eta
θ\theta \theta theta
ϑ\vartheta \vartheta theta
ι\iota \iota iota
κ\kappa \kappa kappa
λ\lambda \lambda lambda
μ\mu \mu mu
ν\nu \nu nu
ξ\xi \xi xi
oo o omicron
π\pi \pi pi
ϖ\varpi \varpi pi
ρ\rho \rho rho
ϱ\varrho \varrho rho
σ\sigma \sigma sigma
ς\varsigma \varsigma sigma
τ\tau \tau tau
υ\upsilon \upsilon upsilon
ϕ\phi \phi phi
φ\varphi \varphi phi
χ\chi \chi chi
ψ\psi \psi psi
ω\omega \omega omega
Γ\Gamma \Gamma Gamma
Δ\Delta \Delta Delta
Θ\Theta \Theta Theta
Λ\Lambda \Lambda Lambda
Ξ\Xi \Xi Xi
Π\Pi \Pi Pi
Σ\Sigma \Sigma Sigma
Υ\Upsilon \Upsilon Upsilon
Φ\Phi \Phi Phi
Ψ\Psi \Psi Psi
Ω\Omega \Omega Omega

其他

tag latex descript
\hbar \hbar h bar
ı\imath \imath imath
ȷ\jmath \jmath jmath
\ell \ell lmath
\Re \Re Real Numbers
\Im \Im Pure Imaginary Numbers
\aleph \aleph aleph
\beth \beth beth
\gimel \gimel gimel
\daleth \daleth daleth
\wp \wp -
\mho \mho -
\backepsilon \backepsilon backepsilon
\partial \partial -
ð\eth \eth -
k\Bbbk \Bbbk -
\complement \complement complement
\circledS \circledS circled S
\S \S sections
ABC\mathbb{ABC} \mathbb{ABC} Blackboard bold/scripts
ABC\mathfrak{ABC} \mathfrak{ABC} Fraktur typeface
ABC\mathcal{ABC} \mathcal{ABC} Calligraphy/script
ABC\mathrm {ABC} \mathrm {ABC} Roman typeface
def\mathrm{def} \mathrm{def} def

分数微分

分数 Fractions

tag latex descript
ABCABC\frac{ABC}{ABC} \frac{ABC}{ABC} 分数
ABCABC\tfrac{ABC}{ABC} \tfrac{ABC}{ABC} 小分数
dt\mathrm{d}t \mathrm{d}t 微分
dydx\frac{\mathrm{d} y}{\mathrm{d} x} \frac{\mathrm{d} y}{\mathrm{d} x} 微分
t\partial t \partial t 偏微分
yx\frac{\partial y}{\partial x} \frac{\partial y}{\partial x} 偏微分
ψ\nabla\psi \nabla\psi Nabla算子
2x1x2y\frac{\partial^2}{\partial x_1\partial x_2}y \frac{\partial^2}{\partial x_1\partial x_2}y 偏微分
1a+7b+29=c\cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c \cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c 连分数
\begin{equation} x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } } \end{equation} \begin{equation} x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } } \end{equation} 连分数

导数 Derivative

tag latex descript
ABC˙\dot{ABC} \dot{ABC} 一阶导数
ABC¨\ddot{ABC} \ddot{ABC} 二阶导数
ABC{ABC}' {ABC}' 一阶导数
ABC{ABC}'' {ABC}'' 二阶导数
ABC(n){ABC}^{(n)} {ABC}^{(n)} n阶导数

模算术 Modular arithmetic

tag latex descript
amodba \bmod b a \bmod b 模除
ab(modm)a \equiv b \pmod{m} a \equiv b \pmod{m} 同余
gcd(m,n)\gcd(m, n) \gcd(m, n) 最大公约数
lcm(m,n)\operatorname{lcm}(m, n) \operatorname{lcm}(m, n) 最小公倍数

根式角标

根式 Radicals

tag latex descript
ABC\sqrt{ABC} \sqrt{ABC} 开平方
ABC\sqrt[]{ABC} \sqrt[]{ABC} 开方

上下标 Sub&Super

tag latex descript
ABC^{ABC} ^{ABC} 上标
ABC_{ABC} _{ABC} 下标
ABCABC_{ABC}^{ABC} _{ABC}^{ABC} 混合上下标
ABCABC_{ABC}^{ABC} _{ABC}^{ABC} 左侧混合上下标
\sideset{_1^2}{_3^4}X_a^b \sideset{_1^2}{_3^4}X_a^b 混合

重音符及其他 Accents and Others

tag latex descript
ABC^\hat{ABC} \hat{ABC} -
ABCˇ\check{ABC} \check{ABC} -
ABCˋ\grave{ABC} \grave{ABC} -
ABCˊ\acute{ABC} \acute{ABC} -
ABC~\tilde{ABC} \tilde{ABC} -
ABC˘\breve{ABC} \breve{ABC} -
ABCˉ\bar{ABC} \bar{ABC} -
ABC\vec{ABC} \vec{ABC} -
̸ABC\not{ABC} \not{ABC} -
^{\circ} ^{\circ} -
ABC~\widetilde{ABC} \widetilde{ABC} -
ABC^\widehat{ABC} \widehat{ABC} -
ABC\overleftarrow{ABC} \overleftarrow{ABC} -
ABC\overrightarrow{ABC} \overrightarrow{ABC} -
ABC\overline{ABC} \overline{ABC} -
ABC\underline{ABC} \underline{ABC} -
ABC\overbrace{ABC} \overbrace{ABC} -
ABC\underbrace{ABC} \underbrace{ABC} -
ABCABC\overset{ABC}{ABC} \overset{ABC}{ABC} -
ABCABC\underset{ABC}{ABC} \underset{ABC}{ABC} -
ABC\stackrel\frown{ABC} \stackrel\frown{ABC} -
ABC\overline{ABC} \overline{ABC} -
ABC\overleftrightarrow{ABC} \overleftrightarrow{ABC} -
ABC\overset{ABC}{\leftarrow} \overset{ABC}{\leftarrow} -
ABC\overset{ABC}{\rightarrow} \overset{ABC}{\rightarrow} -
ABC\xleftarrow[]{ABC} \xleftarrow[]{ABC} -
ABC\xrightarrow[]{ABC} \xrightarrow[]{ABC} -

极限对数

极限 Limits

tag latex descript
lim\lim \lim 极限
limx0\lim_{x \to 0} \lim_{x \to 0} 极限
limx\lim_{x \to \infty} \lim_{x \to \infty} 极限
limx0\textstyle \lim_{x \to 0} \textstyle \lim_{x \to 0} 极限
maxABC\max_{ABC} \max_{ABC} 极大
minABC\min_{ABC} \min_{ABC} 极小

对数指数 Logarithms and exponentials

tag latex descript
logABCABC\log_{ABC}{ABC} \log_{ABC}{ABC} 对数
lgABCABC\lg_{ABC}{ABC} \lg_{ABC}{ABC} 常用对数
lnABCABC\ln_{ABC}{ABC} \ln_{ABC}{ABC} 自然对数
exp\exp \exp 指数

界限 Bounds

tag latex descript
minx\min x \min x 最小
maxy\max y \max y 最大
supt\sup t \sup t 最小上界(上确界)
infs\inf s \inf s 最大下界(下确界)
limu\lim u \lim u 极限
lim supw\limsup w \limsup w 上极限
lim infv\liminf v \liminf v 下极限
dimp\dim p \dim p 维数
kerϕ\ker\phi \ker\phi 零空间(核)

三角函数

三角函数 Trigonometric functions

tag latex descript
sin\sin \sin 正弦
cos\cos \cos 余弦
tan\tan \tan 正切
cot\cot \cot 余切
sec\sec \sec 正割
csc\csc \csc 余割

反三角函数 Inverse trigonometric functions

tag latex descript
sin1\sin^{-1} \sin^{-1} 反正弦
cos1\cos^{-1} \cos^{-1} 反余弦
tan1\tan^{-1} \tan^{-1} 反正切
cot1\cot^{-1} \cot^{-1} 反余切
sec1\sec^{-1} \sec^{-1} 反正割
csc1\csc^{-1} \csc^{-1} 反余割
arcsin\arcsin \arcsin 反正弦
arccos\arccos \arccos 反余弦
arctan\arctan \arctan 反正切
arccot\operatorname{arccot} \operatorname{arccot} 反余切
arcsec\operatorname{arcsec} \operatorname{arcsec} 反正割
arccos\operatorname{arccos} \operatorname{arccos} 反余割

双曲函数 Hyperblic functions

tag latex descript
sinh\sinh \sinh 双曲正弦
cosh\cosh \cosh 双曲余弦
tanh\tanh \tanh 双曲正切
coth\coth \coth 双曲余切
sech\operatorname{sech} \operatorname{sech} 双曲正割
csch\operatorname{csch} \operatorname{csch} 双曲余割

反双曲函数 Inverse hyperbolic functions

tag latex descript
sinh1\sinh^{-1} \sinh^{-1} 反双曲正弦
cosh1\cosh^{-1} \cosh^{-1} 反双曲余弦
tanh1\tanh^{-1} \tanh^{-1} 反双曲正切
coth1\coth^{-1} \coth^{-1} 反双曲余切
sech1\operatorname{sech}^{-1} \operatorname{sech}^{-1} 反双曲正割
csch1\operatorname{csch}^{-1} \operatorname{csch}^{-1} 反双曲余割

积分运算

积分 Integral

tag latex descript
\int \int 积分
ABCABC\int_{ABC}^{ABC} \int_{ABC}^{ABC} 积分
ABCABC\int\limits_{ABC}^{ABC} \int\limits_{ABC}^{ABC} 积分

双重积分 Double integral

tag latex descript
\iint \iint 双重积分
ABCABC\iint_{ABC}^{ABC} \iint_{ABC}^{ABC} 双重积分
ABCABC\iint\limits_{ABC}^{ABC} \iint\limits_{ABC}^{ABC} 双重积分

三重积分 Triple integral

tag latex descript
\iiint \iiint 三重积分
ABCABC\iiint_{ABC}^{ABC} \iiint_{ABC}^{ABC} 三重积分
ABCABC\iiint\limits_{ABC}^{ABC} \iiint\limits_{ABC}^{ABC} 三重积分

曲线积分 Closed line or path integral

tag latex descript
\oint \oint 曲线积分
ABCABC\oint_{ABC}^{ABC} \oint_{ABC}^{ABC} 曲线积分

大型运算

求和 Summation

tag latex descript
\sum \sum 求和
ABCABC\sum_{ABC}^{ABC} \sum_{ABC}^{ABC} 求和
ABCABC{\textstyle \sum_{ABC}^{ABC}} {\textstyle \sum_{ABC}^{ABC}} 求和

乘积余积 Product and coproduct

tag latex descript
\prod \prod 连乘积
ABCABC\prod_{ABC}^{ABC} \prod_{ABC}^{ABC} 连乘积
ABCABC{\textstyle \prod_{ABC}^{ABC}} {\textstyle \prod_{ABC}^{ABC}} 连乘积
\coprod \coprod 余积
ABCABC\coprod_{ABC}^{ABC} \coprod_{ABC}^{ABC} 余积
ABCABC{\textstyle \coprod_{ABC}^{ABC}} {\textstyle \coprod_{ABC}^{ABC}} 余积

并集交集 Union and intersection

tag latex descript
\bigcup \bigcup 并集
ABCABC\bigcup_{ABC}^{ABC} \bigcup_{ABC}^{ABC} 并集
ABCABC{\textstyle \bigcup_{ABC}^{ABC}} {\textstyle \bigcup_{ABC}^{ABC}} 并集
\bigcap \bigcap 交集
ABCABC\bigcap_{ABC}^{ABC} \bigcap_{ABC}^{ABC} 交集
ABCABC{\textstyle \bigcap_{ABC}^{ABC}} {\textstyle \bigcap_{ABC}^{ABC}} 交集

析取合取 Disjunction and conjunction

tag latex descript
\bigvee \bigvee 析取
ABCABC\bigvee_{ABC}^{ABC} \bigvee_{ABC}^{ABC} 析取
ABCABC{\textstyle \bigvee_{ABC}^{ABC}} {\textstyle \bigvee_{ABC}^{ABC}} 析取
\bigwedge \bigwedge 合取
ABCABC\bigwedge_{ABC}^{ABC} \bigwedge_{ABC}^{ABC} 合取
ABCABC{\textstyle \bigwedge_{ABC}^{ABC}} {\textstyle \bigwedge_{ABC}^{ABC}} 合取

括号取整

括号 Brackets

tag latex descript
()\left ( \right ) \left ( \right ) 圆括号
[]\left [ \right ] \left [ \right ] 方括号
\left \langle \right \rangle \left \langle \right \rangle 角括号
{}\left \{ \right \} \left \{ \right \} 花括号
$\left \right $
\left \| \right \| \left \| \right \| 双竖线,范
\left \lfloor \right \rfloor \left \lfloor \right \rfloor 取整函数
\left \lceil \right \rceil \left \lceil \right \rceil 取顶函数

常用 Commons

tag latex descript
(ABCABC)\binom{ABC}{ABC} \binom{ABC}{ABC} 二项式系数
[0,1)\left [ 0,1 \right ) \left [ 0,1 \right ) 开闭区间
$\left\langle\psi\right $ \left\langle\psi\right|
$\left \psi \right \rangle$ \left | \psi \right \rangle
$\left \langle \psi \psi \right \rangle$ \left \langle \psi | \psi \right \rangle

数组矩阵

tag latex descript
\begin{matrix}…&…\end{matrix} \begin{matrix}…&…\end{matrix} 矩阵
[]\begin{bmatrix}…&…\end{bmatrix} \begin{bmatrix}…&…\end{bmatrix} 方括号矩阵
()\begin{pmatrix}…&…\end{pmatrix} \begin{pmatrix}…&…\end{pmatrix} 圆括号矩阵
\begin{vmatrix}…&…\end{vmatrix} \begin{vmatrix}…&…\end{vmatrix} 单竖线矩阵
\begin{Vmatrix}…&…\end{Vmatrix} \begin{Vmatrix}…&…\end{Vmatrix} 双竖线矩阵
{}\begin{Bmatrix}…&…\end{Bmatrix} \begin{Bmatrix}…&…\end{Bmatrix} 花括号矩阵
{\left\{\begin{matrix}…&…\end{matrix}\right. \left\{\begin{matrix}…&…\end{matrix}\right. 左单括号矩阵
}\left.\begin{matrix}…&…\end{matrix}\right\} \left.\begin{matrix}…&…\end{matrix}\right\} 右单括号矩阵
{ if x=\begin{cases}…& \text{ if } x=…\end{cases} \begin{cases}…& \text{ if } x=…\end{cases} 条件等式
\begin{align*}…&…\end{align*} \begin{align*}…&…\end{align*} 多行对齐等式

公式模板

代数

tag latex descript
$$\left(x-1\right)\left(x+3\right)$$ \left(x-1\right)\left(x+3\right) algebra_1
$$\sqrt{a2+b2}$$ \sqrt{a^2+b^2} algebra_2
$$\left ( \frac{a}{b}\right )^{n}= \frac{a{n}}{b{n}}$$ \left ( \frac{a}{b}\right )^{n}= \frac{a^{n}}{b^{n}} algebra_3
$$\frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd}$$ \frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd} algebra_4
$$\frac{x{2}}{a{2}}-\frac{y{2}}{b{2}}=1$$ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 algebra_5
$$\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0$$ \frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0 algebra_6
$$\sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n}$$ \sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n} algebra_7
$$x ={-b \pm \sqrt{b^2-4ac}\over 2a}$$ x ={-b \pm \sqrt{b^2-4ac}\over 2a} algebra_8
$$y-y_{1}=k \left( x-x_{1}\right)$$ y-y_{1}=k \left( x-x_{1}\right) algebra_9
$$\left{\begin{matrix} x=a + r\text{cos}\theta \ y=b + r\text{sin}\theta \end{matrix}\right.$$ \left\{\begin{matrix} x=a + r\text{cos}\theta \\ y=b + r\text{sin}\theta \end{matrix}\right. algebra_10
$$\begin{array}{l} \text{对于方程形如:}x^{3}-1=0 \ \text{设}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \ x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \ x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2} \end{array}$$ \begin{array}{l} \text{对于方程形如:}x^{3}-1=0 \\ \text{设}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \\ x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \\ x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2} \end{array} algebra_11
$$\begin{array}{l} a\mathop\nolimits^2+bx+c=0 \ \Delta =\mathop\nolimits^2-4ac \ \left{\begin{matrix} \Delta \gt 0\text{方程有两个不相等的实根} \ \Delta = 0\text{方程有两个不相等的实根} \ \Delta \lt 0\text{方程有两个不相等的实根} \end{matrix}\right. \end{array}$$ \begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \left\{\begin{matrix} \Delta \gt 0\text{方程有两个不相等的实根} \\ \Delta = 0\text{方程有两个不相等的实根} \\ \Delta \lt 0\text{方程有两个不相等的实根} \end{matrix}\right. \end{array} algebra_12

几何

tag latex descript
$$\Delta A B C$$ \Delta A B C geometry_1
$$a \parallel c,b \parallel c \Rightarrow a \parallel b$$ a \parallel c,b \parallel c \Rightarrow a \parallel b geometry_2
$$l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta$$ l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta geometry_3
$$\left.\begin{matrix} a \perp \alpha \ b \perp \alpha \end{matrix}\right}\Rightarrow a \parallel b$$ \left.\begin{matrix} a \perp \alpha \\ b \perp \alpha \end{matrix}\right\}\Rightarrow a \parallel b geometry_4
$$P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l$$ P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l geometry_5
$$\alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta$$ \alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta geometry_6
$$\left.\begin{matrix} a \subset \beta ,b \subset \beta ,a \cap b=P \ a \parallel \partial ,b \parallel \partial \end{matrix}\right}\Rightarrow \beta \parallel \alpha$$ \left.\begin{matrix} a \subset \beta ,b \subset \beta ,a \cap b=P \\ a \parallel \partial ,b \parallel \partial \end{matrix}\right\}\Rightarrow \beta \parallel \alpha geometry_7
$$\alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b$$ \alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b geometry_8
$$A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha$$ A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha geometry_9
$$\left.\begin{matrix} m \subset \alpha ,n \subset \alpha ,m \cap n=P \ a \perp m,a \perp n \end{matrix}\right}\Rightarrow a \perp \alpha$$ \left.\begin{matrix} m \subset \alpha ,n \subset \alpha ,m \cap n=P \\ a \perp m,a \perp n \end{matrix}\right\}\Rightarrow a \perp \alpha geometry_10
$$\begin{array}{c} \text{直角三角形中,直角边长a,b,斜边边长c} \ a{2}+b{2}=c^{2} \end{array}$$ \begin{array}{c} \text{直角三角形中,直角边长a,b,斜边边长c} \\ a^{2}+b^{2}=c^{2} \end{array} geometry_11

不等式

tag latex descript
$$a > b,b > c \Rightarrow a > c$$ a > b,b > c \Rightarrow a > c inequality_1
$$a > b,c > d \Rightarrow a+c > b+d$$ a > b,c > d \Rightarrow a+c > b+d inequality_2
$$a > b > 0,c > d > 0 \Rightarrow ac bd$$ a > b > 0,c > d > 0 \Rightarrow ac bd inequality_3
$$\begin{array}{c} a \gt b,c \gt 0 \Rightarrow ac \gt bc \ a \gt b,c \lt 0 \Rightarrow ac \lt bc \end{array}$$ \begin{array}{c} a \gt b,c \gt 0 \Rightarrow ac \gt bc \\ a \gt b,c \lt 0 \Rightarrow ac \lt bc \end{array} inequality_4
$$\left a-b \right \geqslant \left
$$-\left a \right \leq a\leqslant \left
$$\left a \right \leqslant b \Rightarrow -b \leqslant a \leqslant \left
$$\left a+b \right \leqslant \left
$$\begin{array}{c} a \gt b \gt 0,n \in N^{\ast},n \gt 1 \ \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b} \end{array}$$ \begin{array}{c} a \gt b \gt 0,n \in N^{\ast},n \gt 1 \\ \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b} \end{array} inequality_9
$$\left( \sum_{k=1}^n a_k b_k \right)^{!!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$ \left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) inequality_10
$$\begin{array}{c} a,b \in R^{+} \ \Rightarrow \frac{a+b}2\ge \sqrt{ab} \ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array}$$ \begin{array}{c} a,b \in R^{+} \\ \Rightarrow \frac{a+b}{{2}}\ge \sqrt{ab} \\ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array} inequality_11
$$\begin{array}{c} a,b \in R \ \Rightarrow a{2}+b{2}\gt 2ab \ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array}$$ \begin{array}{c} a,b \in R \\ \Rightarrow a^{2}+b^{2}\gt 2ab \\ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array} inequality_12
$$\begin{array}{c} H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \ Q_{n}=\sqrt{\sum \limits_{i=1}{n}x_{i}{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} \end{array}$$ \begin{array}{c} H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \\ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \\ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \\ Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \\ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} \end{array} inequality_13

积分

tag latex descript
$$\frac{\mathrm{d}}{\mathrm{d}x}xn=nx{n-1}$$ \frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1} calculous_1
$$\frac{\mathrm{d}}{\mathrm{d}x}e{ax}=a,e{ax}$$ \frac{\mathrm{d}}{\mathrm{d}x}e^{ax}=a\,e^{ax} calculous_2
$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x}$$ \frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x} calculous_3
$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x$$ \frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x calculous_4
$$\frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x$$ \frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x calculous_5
$$\int k\mathrm{d}x = kx+C$$ \int k\mathrm{d}x = kx+C calculous_6
$$\frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x$$ \frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x calculous_7
$$\frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x$$ \frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x calculous_8
$$\int \frac{1}{x}\mathrm{d}x= \ln \left x \right +C$$
$$\int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C$$ \int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C calculous_10
$$\int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C$$ \int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C calculous_11
$$\int u \frac{\mathrm{d}v}{\mathrm{d}x},\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v,\mathrm{d}x$$ \int u \frac{\mathrm{d}v}{\mathrm{d}x}\,\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v\,\mathrm{d}x calculous_12
$$f(x) = \int_{-\infty}^\infty \hat f(x)\xi,e^{2 \pi i \xi x} ,\mathrm{d}\xi$$ f(x) = \int_{-\infty}^\infty \hat f(x)\xi\,e^{2 \pi i \xi x} \,\mathrm{d}\xi calculous_13
$$\int x{\mu}\mathrm{d}x=\frac{x{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right)$$ \int x^{\mu}\mathrm{d}x=\frac{x^{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right) calculous_14

矩阵

tag latex descript
$$\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} array_1
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} array_2
$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \ \vdots & \ddots & \vdots \ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$ \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} array_3
$$\begin{array}{c} A=A^{T} \ A=-A^{T} \end{array}$$ \begin{array}{c} A=A^{T} \\ A=-A^{T} \end{array} array_4
$$O = \begin{bmatrix} 0 & 0 & \cdots & 0 \ 0 & 0 & \cdots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & 0 \end{bmatrix}$$ O = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} array_5
$$A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \ a_{21}& a_{22}& \cdots & a_{2n} \ \vdots & \vdots & \ddots & \vdots \ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} =\left [ a_{ij}\right ]$$ A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} =\left [ a_{ij}\right ] array_6
$$\begin{array}{c} A={\left[ a_{ij}\right]{m \times n}},B={\left[ b{ij}\right]{n \times s}} \ c{ij}= \sum \limits_{k=1}^a_{ik}b_{kj} \ C=AB=\left[ c_{ij}\right]{m \times s} = \left[ \sum \limits{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s} \end{array}$$ \begin{array}{c} A={\left[ a_{ij}\right]_{m \times n}},B={\left[ b_{ij}\right]_{n \times s}} \\ c_{ij}= \sum \limits_{k=1}^{{n}}a_{ik}b_{kj} \\ C=AB=\left[ c_{ij}\right]_{m \times s} = \left[ \sum \limits_{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s} \end{array} array_7
$$\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}& \mathbf{j}& \mathbf{k} \ \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \ \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \ \end{vmatrix}$$ \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}& \mathbf{j}& \mathbf{k} \\ \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \\ \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \\ \end{vmatrix} array_8

三角

tag latex descript
$$e^{i \theta}$$ e^{i \theta} trigonometry_1
$$\left(\frac{\pi}{2}-\theta \right )$$ \left(\frac{\pi}{2}-\theta \right ) trigonometry_2
$$\text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2}$$ \text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2} trigonometry_3
$$\text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2}$$ \text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2} trigonometry_4
$$\text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha}$$ \text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha} trigonometry_5
$$\sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$ \sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} trigonometry_6
$$\sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$ \sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} trigonometry_7
$$\cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$ \cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} trigonometry_8
$$\cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$ \cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} trigonometry_9
$$a{2}=b{2}+c^{2}-2bc\cos A$$ a^{2}=b^{2}+c^{2}-2bc\cos A trigonometry_10
$$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R}$$ \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} trigonometry_11
$$\sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha$$ \sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha trigonometry_12
$$\sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha$$ \sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha trigonometry_13

统计

tag latex descript
$$C_{r}^{n}$$ C_{r}^{n} statistics_1
$$\frac{n!}{r!(n-r)!}$$ \frac{n!}{r!(n-r)!} statistics_2
$$\sum_{i=1}^{n}{X_i}$$ \sum_{i=1}^{n}{X_i} statistics_3
$$\sum_{i=1}{n}{X_i2}$$ \sum_{i=1}^{n}{X_i^2} statistics_4
$$X_1, \cdots,X_n$$ X_1, \cdots,X_n statistics_5
$$\frac{x-\mu}{\sigma}$$ \frac{x-\mu}{\sigma} statistics_6
$$\sum_{i=1}^{n}{(X_i - \overline{X})^2}$$ \sum_{i=1}^{n}{(X_i - \overline{X})^2} statistics_7
$$\begin{array}{c} \text{若}P \left( AB \right) =P \left( A \right) P \left( B \right) \ \text{则}P \left( A \left B\right. \right) =P \left({B}\right) \end{array}$$ \begin{array}{c} \text{若}P \left( AB \right) =P \left( A \right) P \left( B \right) \\ \text{则}P \left( A \left| B\right. \right) =P \left({B}\right) \end{array}
$$P(E) ={n \choose k}p^k (1-p)^{n-k}$$ P(E) ={n \choose k}p^k (1-p)^{n-k} statistics_9
$$P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right )$$ P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right ) statistics_10
$$P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) = \prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)}$$ P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) = \prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)} statistics_11
$$\begin{array}{c} P \left( \emptyset \right) =0 \ P \left( S \right) =1 \end{array}$$ \begin{array}{c} P \left( \emptyset \right) =0 \\ P \left( S \right) =1 \end{array} statistics_12
$$\begin{array}{c} \forall A \in S \ P \left( A \right) \ge 0 \end{array}$$ \begin{array}{c} \forall A \in S \\ P \left( A \right) \ge 0 \end{array} statistics_13
$$P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) = \prod \limits_{i=1}^{n}P \left( A_{i}\right)$$ P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) = \prod \limits_{i=1}^{n}P \left( A_{i}\right) statistics_14
$$\begin{array}{c} S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \ P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}} \end{array}$$ \begin{array}{c} S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \\ P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}} \end{array} statistics_15
$$\begin{array}{c} P_{n}=n! \ A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.} \end{array}$$ \begin{array}{c} P_{n}=n! \\ A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.} \end{array} statistics_16

数列

tag latex descript
$$a_{n}=a_{1}q^{n-1}$$ a_{n}=a_{1}q^{n-1} sequence_1
$$a_{n}=a_{1}+ \left( n-1 \left) d\right. \right.$$ a_{n}=a_{1}+ \left( n-1 \left) d\right. \right. sequence_2
$$S_{n}=na_{1}+\frac{n \left( n-1 \right)}2d$$ S_{n}=na_{1}+\frac{n \left( n-1 \right)}{{2}}d sequence_3
$$S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2}$$ S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2} sequence_4
$$\frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right)$$ \frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right) sequence_5
$$\frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right)$$ \frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right) sequence_6
$$\frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right)$$ \frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right) sequence_7
$$\frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}}$$ \frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}} sequence_8
$$\begin{array}{c} \text{若}\left {a_{n}\right }、\left {b_{n}\right }\text{为等差数列}, \ \text{则}\left {a_{n}+ b_{n}\right }\text{为等差数列} \end{array}$$ \begin{array}{c} \text{若}\left \{a_{n}\right \}、\left \{b_{n}\right \}\text{为等差数列}, \\ \text{则}\left \{a_{n}+ b_{n}\right \}\text{为等差数列} \end{array} sequence_9
$$(1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots$$ (1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots sequence_10

物理

tag latex descript
$${E_p} = -\frac{r}$$ {E_p} = -\frac{{GMm}}{r} physics_4
$$\oint_L { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup}} \over E} } \cdot { \rm{d}} \mathord{ \buildrel{ \lower3pt \hbox{ \scriptscriptstyle \rightharpoonup}} \over l} = 0$ \oint_L { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} } \cdot { \rm{d}} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l} = 0 physics_6
$$d \vec{F}= Id \vec{l} \times \vec{B}$$ d \vec{F}= Id \vec{l} \times \vec{B} physics_8
$$Q = I ^ { 2 } R \mathrm { t }$$ Q = I ^ { 2 } R \mathrm { t } physics_13
$${E_k} = hv - {W_0}$$ {E_k} = hv - {W_0} physics_15
$${y_0} = A \cos ( \omega {t} + { \varphi _0})$$ {y_0} = A \cos ( \omega {t} + { \varphi _0}) physics_19

化学

tag latex descript
$$\ce{SO4^2- + Ba^2+ -> BaSO4 v}$$ %此公式需要在【设置】中开启mhchem扩展支持 具体用法请参考【帮助】2.11.2 \ce{SO4^2- + Ba^2+ -> BaSO4 v} 需要Mhchem扩展支持
$$\ce{A v B (v) -> B ^ B (^)}$$ %此公式需要在【设置】中开启mhchem扩展支持 具体用法请参考【帮助】2.11.2 \ce{A v B (v) -> B ^ B (^)} 需要Mhchem扩展支持
$$\ce{Hg^2+ ->[I-] \underset{\mathrm{red}}{\ce{HgI2}} ->[I-] \underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}}$$ %此公式需要在【设置】中开启mhchem扩展支持 具体用法请参考【帮助】2.11.2 \ce{Hg^2+ ->[I-] $\underset{\mathrm{red}}{\ce{HgI2}}$ ->[I-] $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$} 需要Mhchem扩展支持
$$\ce{Zn^2+ <=>[+ 2OH-][+ 2H+] \underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}} <=>[+ 2OH-][+ 2H+] \underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}}$$ %此公式需要在【设置】中开启mhchem扩展支持 具体用法请参考【帮助】2.11.2 \ce{Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$ <=>[+ 2OH-][+ 2H+] $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$} 需要Mhchem扩展支持