latex就是一个方便编辑数学公式的一个库,简单汇总一下他的用法。
Latex介绍
Donald为了更好的在他的著作里编写数学公式,发明了Tex这种宏语言,专门排版数学公式。Leslie封装了Tex,并自定义了更多的宏指令,成为了LaTeX。现在是国际通用的排版系统,很多论文收稿的排版要求都是LaTex,word是不接收的。
妈咪说公布了一个在线的公式编辑的网站,生成latex更方便了,非常好用:www.latexlive.com
基本语法
LaTex Math的语法多且杂,我们是没法完全记住这些语法的。查询手册在手,天下我有,这里比较推荐名校莱斯Rice大学的一个语法手册,莱斯大学LaTex Math在线PDF手册 。
排版格式
$c = \sqrt{a^{2}+b_{xy}^{2}+e^{x}}$
c = a 2 + b x y 2 + e x c = \sqrt{a^{2}+b_{xy}^{2}+e^{x}} c = a 2 + b x y 2 + e x
$$ c = \sqrt{a^{2}+b_{xy}^{2} +e^{x}} $$
c = a 2 + b x y 2 + e x c = \sqrt{a^{2}+b_{xy}^{2} +e^{x}}
c = a 2 + b x y 2 + e x
转义
以下几个字符:# $ % & ~ _ ^ \ { }有特殊意义,需要表示这些字符时,需要转义,即在每个字符前加上\。
\boxed命令给公式加一个方框。
希腊字母
希腊字母有大写和小写之分,这个大小写是由LaTex的首字母是否大小写来控制的。
希腊字母
LaTeX形式
α A \alpha \Alpha α A
\alpha \Alpha
β B \beta \Beta β B
\beta \Beta
γ Γ \gamma \Gamma γ Γ
\gamma \Gamma
δ Δ \delta \Delta δ Δ
\delta \Delta
ϵ ε E \epsilon \varepsilon \Epsilon ϵ ε E
\epsilon \varepsilon \Epsilon
ζ Z \zeta \Zeta ζ Z
\zeta \Zeta
η H \eta \Eta η H
\eta \Eta
θ ϑ Θ \theta \vartheta \Theta θ ϑ Θ
\theta \vartheta \Theta
ι I \iota \Iota ι I
\iota \Iota
κ K \kappa \Kappa κ K
\kappa \Kappa
λ Λ \lambda \Lambda λ Λ
\lambda \Lambda
μ M \mu M μ M
\mu \Mu
ξ Ξ \xi \Xi ξ Ξ
\xi \Xi
o O
o O
π Π \pi \Pi π Π
\pi \Pi
ρ ϱ P \rho \varrho \Rho ρ ϱ P
\rho \varrho \Rho
σ Σ \sigma \Sigma σ Σ
\sigma \Sigma
τ τ \tau \tau τ τ
\tau \Tau
υ Υ \upsilon \Upsilon υ Υ
\upsilon \Upsilon
ϕ φ Φ \phi \varphi \Phi ϕ φ Φ
\phi \varphi \Phi
χ X \chi \Chi χ X
\chi \Chi
ψ Ψ \psi \Psi ψ Ψ
\psi \Psi
ω Ω \omega \Omega ω Ω
\omega \Omega
上下标
符号
LaTex形式
x 1 x^1 x 1
x^1
x 1 x_1 x 1
x_1
根号
形式:\sqrt[开方次数,默认为2]{开方公式}
符号
LaTex形式
x i j 2 x x 3 x_{ij}^2\quad \sqrt{x}\quad \sqrt[3]{x} x i j 2 x 3 x
x_{ij}^2\quad \sqrt{x}\quad \sqrt[3]{x}
分数
\frac表示分数,
字号工具环境设置:
\dfrac命令把字号设置为独立公式中的大小;
\tfrac则把字号设置为行间公式中的大小。
符号
LaTex形式
1 2 1 2 \frac{1}{2} \dfrac{1}{2} 2 1 2 1
\frac{1}{2} \dfrac{1}{2}
1 2 1 2 \frac{1}{2} \tfrac{1}{2} 2 1 2 1
\frac{1}{2} \tfrac{1}{2}
三角函数、对数、指数
符号
LaTex形式
tan \tan tan
\tan
sin \sin sin
\sin
cos \cos cos
\cos
lg \lg lg
\lg
arcsin \arcsin arcsin
\arcsin
arctan \arctan arctan
\arctan
min \min min
\min
max \max max
\max
exp \exp exp
\exp
log \log log
\log
运算符
简单的四则运算
集合符号
符号
LaTex形式
1 ± 1 1\pm1 1 ± 1
\pm
× \times ×
\times
÷ \div ÷
\div
⋅ \cdot ⋅
\cdot
∩ \cap ∩
\cap
∪ \cup ∪
\cup
≥ \geq ≥
\geq
≤ \leq ≤
\leq
≠ \neq =
\neq
≈ \approx ≈
\approx
≡ \equiv ≡
\equiv
∈ \in ∈
\in
∉ \notin ∈ /
\notin
∋ \ni ∋
\ni
⊂ \subset ⊂
\subset
和、积、极限、积分
和、积、极限、积分等运算符,这些公式在行内公式被压缩,以适应行高,可以通过\limits和\nolimits命令显示制动是否压缩
符号
LaTex形式
∑ \sum ∑
\sum
∏ \prod ∏
\prod
lim \lim lim
\lim
∫ \int ∫
\int
多重积分
符号
LaTex形式
∫ \int ∫
\int
∬ \iint ∬
\iint
∫ ∫ \int \int ∫ ∫
\int \int
∭ \iiint ∭
\iiint
∫ ∫ ∫ \int \int \int ∫ ∫ ∫
\int \int \int
\iiiint
\iiiint
∫ ∫ ∫ ∫ \int \int \int \int ∫ ∫ ∫ ∫
\int \int \int \int
\idotsint
\idotsint
∫ ⋯ ∫ \int \dots \int ∫ ⋯ ∫
\int \dots \int
箭头
符号
LaTex形式
← \leftarrow ←
\leftarrow
→ \rightarrow →
\rightarrow
↔ \leftrightarrow ↔
\leftrightarrow
⟵ \longleftarrow ⟵
\longleftarrow
⟷ \longleftrightarrow ⟷
\longleftrightarrow
⟹ \Longrightarrow ⟹
\Longrightarrow
\xleftarrow和\xrightarrow可根据内容自动调整
注音和标注
符号
LaTex形式
x ˉ \bar{x} x ˉ
\bar{x}
x ˊ \acute{x} x ˊ
\acute{x}
x ˚ \mathring{x} x ˚
\mathring{x}
x ⃗ \vec{x} x
\vec{x}
x ˋ \grave{x} x ˋ
\grave{x}
x ˙ \dot{x} x ˙
\dot{x}
x ^ \hat{x} x ^
\hat{x}
x ~ \tilde{x} x ~
\tilde{x}
x ¨ \ddot{x} x ¨
\ddot{x}
x ˇ \check{x} x ˇ
\check{x}
x ˘ \breve{x} x ˘
\breve{x}
\dddot{x}
\dddot{x}
括号
用() [] {} \lange \rangle表示 () [] {} ⟨⟩
分隔符
符号
LaTex形式
x x x ‾ \overline{xxx} x x x
\overline{xxx}
x x x ↔ \overleftrightarrow{xxx} x x x
\overleftrightarrow{xxx}
x x x ‾ \underline{xxx} x x x
\underline{xxx}
x x x ↔ \underleftrightarrow{xxx} x x x
\underleftrightarrow{xxx}
x x x ← \overleftarrow{xxx} x x x
\overleftarrow{xxx}
x x x ⏞ \overbrace{xxx} x x x
\overbrace{xxx}
x x x ← \underleftarrow{xxx} x x x
\underleftarrow{xxx}
x x x ⏟ \underbrace{xxx} x x x
\underbrace{xxx}
x x x → \overrightarrow{xxx} x x x
\overrightarrow{xxx}
x x x ^ \widehat{xxx} x x x
\widehat{xxx}
x x x → \underrightarrow{xxx} x x x
\underrightarrow{xxx}
x x x ~ \widetilde{xxx} x x x
\widetilde{xxx}
( ( ( ( ( x ) ) ) ) ) \Bigg( \bigg( \Big( \big((x) \big) \Big) \bigg) \Bigg) ( ( ( ( ( x ) ) ) ) )
$\Bigg( \bigg( \Big( \big((x) \big) \Big) \bigg) \Bigg)$
[ [ [ [ [ x ] ] ] ] ] \Bigg[ \bigg[ \Big[ \big[[x] \big] \Big] \bigg] \Bigg] [ [ [ [ [ x ] ] ] ] ]
$\Bigg[ \bigg[ \Big[ \big[[x] \big] \Big] \bigg] \Bigg]$
{ { { { { x } } } } } \Bigg\{ \bigg\{ \Big\{ \big\{\{x\} \big\} \Big\} \bigg\} \Bigg\} { { { { { x } } } } }
$\Bigg\{ \bigg\{ \Big\{ \big\{\{x\} \big\} \Big\} \bigg\} \Bigg\}$
⟨ ⟨ ⟨ ⟨ ⟨ x ⟩ ⟩ ⟩ ⟩ ⟩ \Bigg\langle \bigg\langle \Big\langle \big\langle\langle x \rangle \big\rangle \Big\rangle \bigg\rangle \Bigg\rangle ⟨ ⟨ ⟨ ⟨ ⟨ x ⟩ ⟩ ⟩ ⟩ ⟩
$\Bigg\langle \bigg\langle \Big\langle \big\langle\langle x \rangle \big\rangle \Big\rangle \bigg\rangle \Bigg\rangle$
∣ ∣ ∣ ∣ ∣ x ∣ ∣ ∣ ∣ ∣ \Bigg\lvert \bigg\lvert \Big\lvert \big\lvert\lvert x \rvert \big\rvert \Big\rvert \bigg\rvert \Bigg\rvert ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ x ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
$\Bigg\lvert \bigg\lvert \Big\lvert \big\lvert\lvert x \rvert \big\rvert \Big\rvert \bigg\rvert \Bigg\rvert$
∥ ∥ ∥ ∥ ∥ x ∥ ∥ ∥ ∥ ∥ \Bigg\lVert\bigg\lVert\Big\lVert\big\lVert\lVert x \rVert \big\rVert\Big\rVert\bigg\rVert \Bigg\rVert ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ x ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥
$\Bigg\lVert\big\lVert \Big\lVert \big\lVert \lVert x \rVert \big\rVert \Big\rVert \bigg\rVert \Bigg\rVert$
省略号
省略号用 \dots \cdots \vdots \ddots表示 ,\dots和\cdots的纵向位置不同,前者一般用于有下标的序列
符号
LaTex形式
… \dots …
\dots
⋯ \cdots ⋯
\cdots
⋮ \vdots ⋮
\vdots
⋱ \ddots ⋱
\ddots
x 1 , x 2 , … , x n 1 , 2 , ⋯ , n ⋮ ⋱ x_1, x_2, \dots, x_n\quad 1,2,\cdots,n\quad \vdots\quad \ddots
x 1 , x 2 , … , x n 1 , 2 , ⋯ , n ⋮ ⋱
空白间距
语法
格式
实例
显示
quad空格
a \quad b
a b a \quad b a b
两个quad空格
a \qquad b
a b a \qquad b a b
两个m的宽度
大空格
a \: b
a b a \: b a b
1/3m宽度
中等空格
a \; b
a b a \; b a b
2/7m宽度
小空格
a \, b
a b a \, b a b
1/6m宽度
没有空格
ab
a b ab a b
没有空格
缩进空格
a \! b
a b a \! b a b
缩进1/6m宽度
复杂公式
分段函数是非常复杂的,这时候会用到LaTex的cases语法,用\begin{cases}和\end{cases}围住即可,中间则用\\来分段
矩阵
x 1 x 2 … x 3 x 4 … ⋮ ⋮ ⋱ \begin{array}{ccc}
x_1 & x_2 &\dots\\
x_3 & x_4 &\dots\\
\vdots&\vdots&\ddots
\end{array}
x 1 x 3 ⋮ x 2 x 4 ⋮ … … ⋱
$$ \begin{array}{ccc} x_1 & x_2 &\dots\\ x_3 & x_4 &\dots\\ \vdots&\vdots&\ddots \end{array} $$
( a b c d ) [ a b c d ] { a b c d } ∣ a b c d ∣ ∥ a b c d ∥ \begin{pmatrix}
a & b\\
c & d \\
\end{pmatrix}
\quad
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}
\quad
\begin{Bmatrix}
a & b \\
c & d \\
\end{Bmatrix}
\quad
\begin{vmatrix}
a & b \\
c & d \\
\end{vmatrix}
\quad
\begin{Vmatrix}
a & b \\
c & d \\
\end{Vmatrix}
( a c b d ) [ a c b d ] { a c b d } ∣ ∣ ∣ ∣ a c b d ∣ ∣ ∣ ∣ ∥ ∥ ∥ ∥ a c b d ∥ ∥ ∥ ∥
$$ \begin{pmatrix} a & b\\ c & d \\ \end{pmatrix} \quad \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} \quad \begin{Bmatrix} a & b \\ c & d \\ \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \quad \begin{Vmatrix} a & b \\ c & d \\ \end{Vmatrix} $$
(
\begin{smallmatrix}
a & b \\
c & d
\end{smallmatrix}
)
$$ ( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} ) $$
长公式
无需对齐可使用multline;需要对齐使用split;用\\来分行;用&设置对齐的位置
\begin{multline}
x = a+b+c+{} \\
d+e+f+g
\end{multline}
$$ \begin{multline} x = a+b+c+{} \\ d+e+f+g \end{multline} $$
\begin{split}
x = {} & a + b + c +{}\\
& d + e + f + g
\end{split}
$$ \begin{split} x = {} & a + b + c +{}\\ & d + e + f + g \end{split} $$
公式组
不需要对齐的公式组用gather;需要对齐使用align:
\begin{gather}
a = b+c+d\\
x = y+z\\
5 = 4+1\\
\end{gather}
$$ \begin{gather} a = b+c+d\\ x = y+z\\ 5 = 4+1\\ \end{gather} $$
\begin{align}
a &=b+c+d \\
x &=y+z\\
5 &= 4+1
\end{align}
$$ \begin{align} a &=b+c+d \\ x &=y+z\\ 5 &= 4+1 \end{align} $$
分支公式
y = { − x , x ≤ 0 x , x > 0 y=\begin{cases}
-x,\quad x\leq 0\\
x, \quad x>0
\end{cases}
y = { − x , x ≤ 0 x , x > 0
$$ y=\begin{cases} -x,\quad x\leq 0\\ x, \quad x>0 \end{cases} $$
定理、引理、证明、假设
定理
\newtheorem{thm}{\bf Theorem}[section]
\begin{thm}\label{thm1}
Suppose system (\ref{l1}) satisfies Assumption (\ref{mim1}), the closed-loop system consisting of
system (\ref{l1}), the disturbance observer (\ref{g1}) and the proposed controller (\ref{n3}) is semi-globally ISS.
\end{thm}
$$ \newtheorem{thm}{\bf Theorem}[section] \begin{thm}\label{thm1} Suppose system (\ref{l1}) satisfies Assumption (\ref{mim1}), the closed-loop system consisting of system (\ref{l1}), the disturbance observer (\ref{g1}) and the proposed controller (\ref{n3}) is semi-globally ISS. \end{thm} $$
引理
\newtheorem{lemma}{Lemma}[section]
\begin{lemma} \label{lemma1}
\end{lemma}
$$ \newtheorem{lemma}{Lemma}[section] \begin{lemma} \label{lemma1} \end{lemma} $$
证明
\begin{proof}
***
\end{proof}
$$ \begin{proof} *** \end{proof} $$
假设
\newtheorem{assumption}{Assumption}[section]
\begin{assumption}
***
\end{assumption}
$$ \newtheorem{assumption}{Assumption}[section] \begin{assumption} *** \end{assumption} $$
常用指令汇总
常用符号
二元运算符 Binary operations
tag
latex
descript
+ + +
+
加
− - −
-
减
× \times ×
\times
乘
÷ {\div} ÷
{\div}
除
± \pm ±
\pm
加减
∓ \mp ∓
\mp
减加
◃ \triangleleft ◃
\triangleleft
正规子群
▹ \triangleright ▹
\triangleright
属于正规子群
⋅ \cdot ⋅
\cdot
点
∖ \setminus ∖
\setminus
减号集
⋆ \star ⋆
\star
星
∗ \ast ∗
\ast
星号
∪ \cup ∪
\cup
并集
∩ \cap ∩
\cap
交集
⊔ \sqcup ⊔
\sqcup
-
⊓ \sqcap ⊓
\sqcap
-
∨ \vee ∨
\vee
-
∧ \wedge ∧
\wedge
-
∘ \circ ∘
\circ
-
∙ \bullet ∙
\bullet
-
⊕ \oplus ⊕
\oplus
-
⊖ \ominus ⊖
\ominus
-
⊙ \odot ⊙
\odot
-
⊘ \oslash ⊘
\oslash
-
⊗ \otimes ⊗
\otimes
-
◯ \bigcirc ◯
\bigcirc
-
⋄ \diamond ⋄
\diamond
-
⊎ \uplus ⊎
\uplus
-
△ \bigtriangleup △
\bigtriangleup
-
▽ \bigtriangledown ▽
\bigtriangledown
-
⊲ \lhd ⊲
\lhd
-
⊳ \rhd ⊳
\rhd
-
⊴ \unlhd ⊴
\unlhd
-
⊵ \unrhd ⊵
\unrhd
-
⨿ \amalg ⨿
\amalg
-
≀ \wr ≀
\wr
-
† \dagger †
\dagger
-
‡ \ddagger ‡
\ddagger
-
二元关系符 Binary relations
tag
latex
descript
< < <
<
-
> > >
>
-
= = =
=
-
≤ \le ≤
\le
-
≥ \ge ≥
\ge
-
≡ \equiv ≡
\equiv
-
≪ \ll ≪
\ll
-
≫ \gg ≫
\gg
-
≐ \doteq ≐
\doteq
-
≜ \triangleq ≜
\triangleq
-
≺ \prec ≺
\prec
-
≻ \succ ≻
\succ
-
∼ \sim ∼
\sim
-
⪯ \preceq ⪯
\preceq
-
⪰ \succeq ⪰
\succeq
-
≃ \simeq ≃
\simeq
-
≈ \approx ≈
\approx
-
⊂ \subset ⊂
\subset
-
⊃ \supset ⊃
\supset
-
⊆ \subseteq ⊆
\subseteq
-
⊇ \supseteq ⊇
\supseteq
-
⊏ \sqsubset ⊏
\sqsubset
-
⊐ \sqsupset ⊐
\sqsupset
-
⊑ \sqsubseteq ⊑
\sqsubseteq
-
⊒ \sqsupseteq ⊒
\sqsupseteq
-
≅ \cong ≅
\cong
-
⋈ \Join ⋈
\Join
-
⋈ \bowtie ⋈
\bowtie
-
∝ \propto ∝
\propto
-
∈ \in ∈
\in
-
∋ \ni ∋
\ni
-
⊢ \vdash ⊢
\vdash
-
⊣ \dashv ⊣
\dashv
-
⊨ \models ⊨
\models
-
∣ \mid ∣
\mid
-
∥ \parallel ∥
\parallel
-
⊥ \perp ⊥
\perp
-
⌣ \smile ⌣
\smile
-
⌢ \frown ⌢
\frown
-
≍ \asymp ≍
\asymp
-
: : :
:
-
∉ \notin ∈ /
\notin
-
≠ \ne =
\ne
-
箭头符号 Arrows
tag
latex
descript
← \gets ←
\gets
-
→ \to →
\to
-
⟵ \longleftarrow ⟵
\longleftarrow
-
⟶ \longrightarrow ⟶
\longrightarrow
-
↑ \uparrow ↑
\uparrow
-
↓ \downarrow ↓
\downarrow
-
↕ \updownarrow ↕
\updownarrow
-
↔ \leftrightarrow ↔
\leftrightarrow
-
⇑ \Uparrow ⇑
\Uparrow
-
⇓ \Downarrow ⇓
\Downarrow
-
⇕ \Updownarrow ⇕
\Updownarrow
-
⟷ \longleftrightarrow ⟷
\longleftrightarrow
-
⇐ \Leftarrow ⇐
\Leftarrow
-
⟸ \Longleftarrow ⟸
\Longleftarrow
-
⇒ \Rightarrow ⇒
\Rightarrow
-
⟹ \Longrightarrow ⟹
\Longrightarrow
-
⇔ \Leftrightarrow ⇔
\Leftrightarrow
-
⟺ \Longleftrightarrow ⟺
\Longleftrightarrow
-
↦ \mapsto ↦
\mapsto
-
⟼ \longmapsto ⟼
\longmapsto
-
↗ \nearrow ↗
\nearrow
-
↘ \searrow ↘
\searrow
-
↙ \swarrow ↙
\swarrow
-
↖ \nwarrow ↖
\nwarrow
-
↩ \hookleftarrow ↩
\hookleftarrow
-
↪ \hookrightarrow ↪
\hookrightarrow
-
⇌ \rightleftharpoons ⇌
\rightleftharpoons
-
⟺ \iff ⟺
\iff
-
↼ \leftharpoonup ↼
\leftharpoonup
-
⇀ \rightharpoonup ⇀
\rightharpoonup
-
↽ \leftharpoondown ↽
\leftharpoondown
-
⇁ \rightharpoondown ⇁
\rightharpoondown
-
其他符号 Others
tag
latex
descript
∵ \because ∵
\because
-
∴ \therefore ∴
\therefore
-
… \dots …
\dots
-
⋯ \cdots ⋯
\cdots
-
⋮ \vdots ⋮
\vdots
-
⋱ \ddots ⋱
\ddots
-
∀ \forall ∀
\forall
-
∃ \exists ∃
\exists
-
∄ \nexists ∄
\nexists
-
Ⅎ \Finv Ⅎ
\Finv
-
¬ \neg ¬
\neg
-
′ \prime ′
\prime
-
∅ \emptyset ∅
\emptyset
-
∞ \infty ∞
\infty
-
∇ \nabla ∇
\nabla
-
△ \triangle △
\triangle
-
□ \Box □
\Box
-
◊ \Diamond ◊
\Diamond
-
⊥ \bot ⊥
\bot
-
⊤ \top ⊤
\top
-
∠ \angle ∠
\angle
-
∡ \measuredangle ∡
\measuredangle
-
∢ \sphericalangle ∢
\sphericalangle
-
√ \surd √
\surd
-
♢ \diamondsuit ♢
\diamondsuit
-
♡ \heartsuit ♡
\heartsuit
-
♣ \clubsuit ♣
\clubsuit
-
♠ \spadesuit ♠
\spadesuit
-
♭ \flat ♭
\flat
-
♮ \natural ♮
\natural
-
♯ \sharp ♯
\sharp
-
希腊字母
tag
latex
descript
α \alpha α
\alpha
alpha
β \beta β
\beta
beta
γ \gamma γ
\gamma
gamma
δ \delta δ
\delta
delta
ϵ \epsilon ϵ
\epsilon
epsilon
ε \varepsilon ε
\varepsilon
epsilon
ζ \zeta ζ
\zeta
zeta
η \eta η
\eta
eta
θ \theta θ
\theta
theta
ϑ \vartheta ϑ
\vartheta
theta
ι \iota ι
\iota
iota
κ \kappa κ
\kappa
kappa
λ \lambda λ
\lambda
lambda
μ \mu μ
\mu
mu
ν \nu ν
\nu
nu
ξ \xi ξ
\xi
xi
o o o
o
omicron
π \pi π
\pi
pi
ϖ \varpi ϖ
\varpi
pi
ρ \rho ρ
\rho
rho
ϱ \varrho ϱ
\varrho
rho
σ \sigma σ
\sigma
sigma
ς \varsigma ς
\varsigma
sigma
τ \tau τ
\tau
tau
υ \upsilon υ
\upsilon
upsilon
ϕ \phi ϕ
\phi
phi
φ \varphi φ
\varphi
phi
χ \chi χ
\chi
chi
ψ \psi ψ
\psi
psi
ω \omega ω
\omega
omega
Γ \Gamma Γ
\Gamma
Gamma
Δ \Delta Δ
\Delta
Delta
Θ \Theta Θ
\Theta
Theta
Λ \Lambda Λ
\Lambda
Lambda
Ξ \Xi Ξ
\Xi
Xi
Π \Pi Π
\Pi
Pi
Σ \Sigma Σ
\Sigma
Sigma
Υ \Upsilon Υ
\Upsilon
Upsilon
Φ \Phi Φ
\Phi
Phi
Ψ \Psi Ψ
\Psi
Psi
Ω \Omega Ω
\Omega
Omega
其他
tag
latex
descript
ℏ \hbar ℏ
\hbar
h bar
ı \imath ı
\imath
imath
ȷ \jmath ȷ
\jmath
jmath
ℓ \ell ℓ
\ell
lmath
ℜ \Re ℜ
\Re
Real Numbers
ℑ \Im ℑ
\Im
Pure Imaginary Numbers
ℵ \aleph ℵ
\aleph
aleph
ℶ \beth ℶ
\beth
beth
ℷ \gimel ℷ
\gimel
gimel
ℸ \daleth ℸ
\daleth
daleth
℘ \wp ℘
\wp
-
℧ \mho ℧
\mho
-
∍ \backepsilon ∍
\backepsilon
backepsilon
∂ \partial ∂
\partial
-
ð \eth ð
\eth
-
k \Bbbk k
\Bbbk
-
∁ \complement ∁
\complement
complement
Ⓢ \circledS Ⓢ
\circledS
circled S
\S
\S
sections
A B C \mathbb{ABC} A B C
\mathbb{ABC}
Blackboard bold/scripts
A B C \mathfrak{ABC} A B C
\mathfrak{ABC}
Fraktur typeface
A B C \mathcal{ABC} A B C
\mathcal{ABC}
Calligraphy/script
A B C \mathrm {ABC} A B C
\mathrm {ABC}
Roman typeface
d e f \mathrm{def} d e f
\mathrm{def}
def
分数微分
分数 Fractions
tag
latex
descript
A B C A B C \frac{ABC}{ABC} A B C A B C
\frac{ABC}{ABC}
分数
A B C A B C \tfrac{ABC}{ABC} A B C A B C
\tfrac{ABC}{ABC}
小分数
d t \mathrm{d}t d t
\mathrm{d}t
微分
d y d x \frac{\mathrm{d} y}{\mathrm{d} x} d x d y
\frac{\mathrm{d} y}{\mathrm{d} x}
微分
∂ t \partial t ∂ t
\partial t
偏微分
∂ y ∂ x \frac{\partial y}{\partial x} ∂ x ∂ y
\frac{\partial y}{\partial x}
偏微分
∇ ψ \nabla\psi ∇ ψ
\nabla\psi
Nabla算子
∂ 2 ∂ x 1 ∂ x 2 y \frac{\partial^2}{\partial x_1\partial x_2}y ∂ x 1 ∂ x 2 ∂ 2 y
\frac{\partial^2}{\partial x_1\partial x_2}y
偏微分
1 a + 7 b + 2 9 = c \cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c a + b + 9 2 7 1 = c
\cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c
连分数
\begin{equation} x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } } \end{equation}
\begin{equation} x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } } \end{equation}
连分数
导数 Derivative
tag
latex
descript
A B C ˙ \dot{ABC} A B C ˙
\dot{ABC}
一阶导数
A B C ¨ \ddot{ABC} A B C ¨
\ddot{ABC}
二阶导数
A B C ′ {ABC}' A B C ′
{ABC}'
一阶导数
A B C ′ ′ {ABC}'' A B C ′ ′
{ABC}''
二阶导数
A B C ( n ) {ABC}^{(n)} A B C ( n )
{ABC}^{(n)}
n阶导数
模算术 Modular arithmetic
tag
latex
descript
a m o d b a \bmod b a m o d b
a \bmod b
模除
a ≡ b ( m o d m ) a \equiv b \pmod{m} a ≡ b ( m o d m )
a \equiv b \pmod{m}
同余
gcd ( m , n ) \gcd(m, n) g cd( m , n )
\gcd(m, n)
最大公约数
lcm ( m , n ) \operatorname{lcm}(m, n) l c m ( m , n )
\operatorname{lcm}(m, n)
最小公倍数
根式角标
根式 Radicals
tag
latex
descript
A B C \sqrt{ABC} A B C
\sqrt{ABC}
开平方
A B C \sqrt[]{ABC} A B C
\sqrt[]{ABC}
开方
上下标 Sub&Super
tag
latex
descript
A B C ^{ABC} A B C
^{ABC}
上标
A B C _{ABC} A B C
_{ABC}
下标
A B C A B C _{ABC}^{ABC} A B C A B C
_{ABC}^{ABC}
混合上下标
A B C A B C _{ABC}^{ABC} A B C A B C
_{ABC}^{ABC}
左侧混合上下标
\sideset{_1^2}{_3^4}X_a^b
\sideset{_1^2}{_3^4}X_a^b
混合
重音符及其他 Accents and Others
tag
latex
descript
A B C ^ \hat{ABC} A B C ^
\hat{ABC}
-
A B C ˇ \check{ABC} A B C ˇ
\check{ABC}
-
A B C ˋ \grave{ABC} A B C ˋ
\grave{ABC}
-
A B C ˊ \acute{ABC} A B C ˊ
\acute{ABC}
-
A B C ~ \tilde{ABC} A B C ~
\tilde{ABC}
-
A B C ˘ \breve{ABC} A B C ˘
\breve{ABC}
-
A B C ˉ \bar{ABC} A B C ˉ
\bar{ABC}
-
A B C ⃗ \vec{ABC} A B C
\vec{ABC}
-
̸ A B C \not{ABC} A B C
\not{ABC}
-
∘ ^{\circ} ∘
^{\circ}
-
A B C ~ \widetilde{ABC} A B C
\widetilde{ABC}
-
A B C ^ \widehat{ABC} A B C
\widehat{ABC}
-
A B C ← \overleftarrow{ABC} A B C
\overleftarrow{ABC}
-
A B C → \overrightarrow{ABC} A B C
\overrightarrow{ABC}
-
A B C ‾ \overline{ABC} A B C
\overline{ABC}
-
A B C ‾ \underline{ABC} A B C
\underline{ABC}
-
A B C ⏞ \overbrace{ABC} A B C
\overbrace{ABC}
-
A B C ⏟ \underbrace{ABC} A B C
\underbrace{ABC}
-
A B C A B C \overset{ABC}{ABC} A BC A B C
\overset{ABC}{ABC}
-
A B C A B C \underset{ABC}{ABC} A B C A BC
\underset{ABC}{ABC}
-
A B C ⌢ \stackrel\frown{ABC} A BC ⌢
\stackrel\frown{ABC}
-
A B C ‾ \overline{ABC} A B C
\overline{ABC}
-
A B C ↔ \overleftrightarrow{ABC} A B C
\overleftrightarrow{ABC}
-
← A B C \overset{ABC}{\leftarrow} ← A B C
\overset{ABC}{\leftarrow}
-
→ A B C \overset{ABC}{\rightarrow} → A B C
\overset{ABC}{\rightarrow}
-
← A B C \xleftarrow[]{ABC} A B C
\xleftarrow[]{ABC}
-
→ A B C \xrightarrow[]{ABC} A B C
\xrightarrow[]{ABC}
-
极限对数
极限 Limits
tag
latex
descript
lim \lim lim
\lim
极限
lim x → 0 \lim_{x \to 0} lim x → 0
\lim_{x \to 0}
极限
lim x → ∞ \lim_{x \to \infty} lim x → ∞
\lim_{x \to \infty}
极限
lim x → 0 \textstyle \lim_{x \to 0} lim x → 0
\textstyle \lim_{x \to 0}
极限
max A B C \max_{ABC} max A B C
\max_{ABC}
极大
min A B C \min_{ABC} min A B C
\min_{ABC}
极小
对数指数 Logarithms and exponentials
tag
latex
descript
log A B C A B C \log_{ABC}{ABC} log A B C A B C
\log_{ABC}{ABC}
对数
lg A B C A B C \lg_{ABC}{ABC} lg A B C A B C
\lg_{ABC}{ABC}
常用对数
ln A B C A B C \ln_{ABC}{ABC} ln A B C A B C
\ln_{ABC}{ABC}
自然对数
exp \exp exp
\exp
指数
界限 Bounds
tag
latex
descript
min x \min x min x
\min x
最小
max y \max y max y
\max y
最大
sup t \sup t sup t
\sup t
最小上界(上确界)
inf s \inf s inf s
\inf s
最大下界(下确界)
lim u \lim u lim u
\lim u
极限
lim sup w \limsup w l i m s u p w
\limsup w
上极限
lim inf v \liminf v l i m i n f v
\liminf v
下极限
dim p \dim p dim p
\dim p
维数
ker ϕ \ker\phi ker ϕ
\ker\phi
零空间(核)
三角函数
三角函数 Trigonometric functions
tag
latex
descript
sin \sin sin
\sin
正弦
cos \cos cos
\cos
余弦
tan \tan tan
\tan
正切
cot \cot cot
\cot
余切
sec \sec sec
\sec
正割
csc \csc csc
\csc
余割
反三角函数 Inverse trigonometric functions
tag
latex
descript
sin − 1 \sin^{-1} sin − 1
\sin^{-1}
反正弦
cos − 1 \cos^{-1} cos − 1
\cos^{-1}
反余弦
tan − 1 \tan^{-1} tan − 1
\tan^{-1}
反正切
cot − 1 \cot^{-1} cot − 1
\cot^{-1}
反余切
sec − 1 \sec^{-1} sec − 1
\sec^{-1}
反正割
csc − 1 \csc^{-1} csc − 1
\csc^{-1}
反余割
arcsin \arcsin arcsin
\arcsin
反正弦
arccos \arccos arccos
\arccos
反余弦
arctan \arctan arctan
\arctan
反正切
arccot \operatorname{arccot} a r c c o t
\operatorname{arccot}
反余切
arcsec \operatorname{arcsec} a r c s e c
\operatorname{arcsec}
反正割
arccos \operatorname{arccos} a r c c o s
\operatorname{arccos}
反余割
双曲函数 Hyperblic functions
tag
latex
descript
sinh \sinh sinh
\sinh
双曲正弦
cosh \cosh cosh
\cosh
双曲余弦
tanh \tanh tanh
\tanh
双曲正切
coth \coth coth
\coth
双曲余切
sech \operatorname{sech} s e c h
\operatorname{sech}
双曲正割
csch \operatorname{csch} c s c h
\operatorname{csch}
双曲余割
反双曲函数 Inverse hyperbolic functions
tag
latex
descript
sinh − 1 \sinh^{-1} sinh − 1
\sinh^{-1}
反双曲正弦
cosh − 1 \cosh^{-1} cosh − 1
\cosh^{-1}
反双曲余弦
tanh − 1 \tanh^{-1} tanh − 1
\tanh^{-1}
反双曲正切
coth − 1 \coth^{-1} coth − 1
\coth^{-1}
反双曲余切
sech − 1 \operatorname{sech}^{-1} s e c h − 1
\operatorname{sech}^{-1}
反双曲正割
csch − 1 \operatorname{csch}^{-1} c s c h − 1
\operatorname{csch}^{-1}
反双曲余割
积分运算
积分 Integral
tag
latex
descript
∫ \int ∫
\int
积分
∫ A B C A B C \int_{ABC}^{ABC} ∫ A B C A B C
\int_{ABC}^{ABC}
积分
∫ A B C A B C \int\limits_{ABC}^{ABC} A B C ∫ A B C
\int\limits_{ABC}^{ABC}
积分
双重积分 Double integral
tag
latex
descript
∬ \iint ∬
\iint
双重积分
∬ A B C A B C \iint_{ABC}^{ABC} ∬ A B C A B C
\iint_{ABC}^{ABC}
双重积分
∬ A B C A B C \iint\limits_{ABC}^{ABC} A B C ∬ A B C
\iint\limits_{ABC}^{ABC}
双重积分
三重积分 Triple integral
tag
latex
descript
∭ \iiint ∭
\iiint
三重积分
∭ A B C A B C \iiint_{ABC}^{ABC} ∭ A B C A B C
\iiint_{ABC}^{ABC}
三重积分
∭ A B C A B C \iiint\limits_{ABC}^{ABC} A B C ∭ A B C
\iiint\limits_{ABC}^{ABC}
三重积分
曲线积分 Closed line or path integral
tag
latex
descript
∮ \oint ∮
\oint
曲线积分
∮ A B C A B C \oint_{ABC}^{ABC} ∮ A B C A B C
\oint_{ABC}^{ABC}
曲线积分
大型运算
求和 Summation
tag
latex
descript
∑ \sum ∑
\sum
求和
∑ A B C A B C \sum_{ABC}^{ABC} ∑ A B C A B C
\sum_{ABC}^{ABC}
求和
∑ A B C A B C {\textstyle \sum_{ABC}^{ABC}} ∑ A B C A B C
{\textstyle \sum_{ABC}^{ABC}}
求和
乘积余积 Product and coproduct
tag
latex
descript
∏ \prod ∏
\prod
连乘积
∏ A B C A B C \prod_{ABC}^{ABC} ∏ A B C A B C
\prod_{ABC}^{ABC}
连乘积
∏ A B C A B C {\textstyle \prod_{ABC}^{ABC}} ∏ A B C A B C
{\textstyle \prod_{ABC}^{ABC}}
连乘积
∐ \coprod ∐
\coprod
余积
∐ A B C A B C \coprod_{ABC}^{ABC} ∐ A B C A B C
\coprod_{ABC}^{ABC}
余积
∐ A B C A B C {\textstyle \coprod_{ABC}^{ABC}} ∐ A B C A B C
{\textstyle \coprod_{ABC}^{ABC}}
余积
并集交集 Union and intersection
tag
latex
descript
⋃ \bigcup ⋃
\bigcup
并集
⋃ A B C A B C \bigcup_{ABC}^{ABC} ⋃ A B C A B C
\bigcup_{ABC}^{ABC}
并集
⋃ A B C A B C {\textstyle \bigcup_{ABC}^{ABC}} ⋃ A B C A B C
{\textstyle \bigcup_{ABC}^{ABC}}
并集
⋂ \bigcap ⋂
\bigcap
交集
⋂ A B C A B C \bigcap_{ABC}^{ABC} ⋂ A B C A B C
\bigcap_{ABC}^{ABC}
交集
⋂ A B C A B C {\textstyle \bigcap_{ABC}^{ABC}} ⋂ A B C A B C
{\textstyle \bigcap_{ABC}^{ABC}}
交集
析取合取 Disjunction and conjunction
tag
latex
descript
⋁ \bigvee ⋁
\bigvee
析取
⋁ A B C A B C \bigvee_{ABC}^{ABC} ⋁ A B C A B C
\bigvee_{ABC}^{ABC}
析取
⋁ A B C A B C {\textstyle \bigvee_{ABC}^{ABC}} ⋁ A B C A B C
{\textstyle \bigvee_{ABC}^{ABC}}
析取
⋀ \bigwedge ⋀
\bigwedge
合取
⋀ A B C A B C \bigwedge_{ABC}^{ABC} ⋀ A B C A B C
\bigwedge_{ABC}^{ABC}
合取
⋀ A B C A B C {\textstyle \bigwedge_{ABC}^{ABC}} ⋀ A B C A B C
{\textstyle \bigwedge_{ABC}^{ABC}}
合取
括号取整
括号 Brackets
tag
latex
descript
( ) \left ( \right ) ( )
\left ( \right )
圆括号
[ ] \left [ \right ] [ ]
\left [ \right ]
方括号
⟨ ⟩ \left \langle \right \rangle ⟨ ⟩
\left \langle \right \rangle
角括号
{ } \left \{ \right \} { }
\left \{ \right \}
花括号
$\left
\right
$
∥ ∥ \left \| \right \| ∥ ∥
\left \| \right \|
双竖线,范
⌊ ⌋ \left \lfloor \right \rfloor ⌊ ⌋
\left \lfloor \right \rfloor
取整函数
⌈ ⌉ \left \lceil \right \rceil ⌈ ⌉
\left \lceil \right \rceil
取顶函数
常用 Commons
tag
latex
descript
( A B C A B C ) \binom{ABC}{ABC} ( A B C A B C )
\binom{ABC}{ABC}
二项式系数
[ 0 , 1 ) \left [ 0,1 \right ) [ 0 , 1 )
\left [ 0,1 \right )
开闭区间
$\left\langle\psi\right
$
\left\langle\psi\right|
$\left
\psi \right \rangle$
\left | \psi \right \rangle
$\left \langle \psi
\psi \right \rangle$
\left \langle \psi | \psi \right \rangle
数组矩阵
tag
latex
descript
… … \begin{matrix}…&…\end{matrix} … …
\begin{matrix}…&…\end{matrix}
矩阵
[ … … ] \begin{bmatrix}…&…\end{bmatrix} [ … … ]
\begin{bmatrix}…&…\end{bmatrix}
方括号矩阵
( … … ) \begin{pmatrix}…&…\end{pmatrix} ( … … )
\begin{pmatrix}…&…\end{pmatrix}
圆括号矩阵
∣ … … ∣ \begin{vmatrix}…&…\end{vmatrix} ∣ ∣ … … ∣ ∣
\begin{vmatrix}…&…\end{vmatrix}
单竖线矩阵
∥ … … ∥ \begin{Vmatrix}…&…\end{Vmatrix} ∥ ∥ … … ∥ ∥
\begin{Vmatrix}…&…\end{Vmatrix}
双竖线矩阵
{ … … } \begin{Bmatrix}…&…\end{Bmatrix} { … … }
\begin{Bmatrix}…&…\end{Bmatrix}
花括号矩阵
{ … … \left\{\begin{matrix}…&…\end{matrix}\right. { … …
\left\{\begin{matrix}…&…\end{matrix}\right.
左单括号矩阵
… … } \left.\begin{matrix}…&…\end{matrix}\right\} … … }
\left.\begin{matrix}…&…\end{matrix}\right\}
右单括号矩阵
{ … if x = … \begin{cases}…& \text{ if } x=…\end{cases} { … if x = …
\begin{cases}…& \text{ if } x=…\end{cases}
条件等式
\begin{align*}…&…\end{align*}
\begin{align*}…&…\end{align*}
多行对齐等式
公式模板
代数
tag
latex
descript
$$\left(x-1\right)\left(x+3\right)$$
\left(x-1\right)\left(x+3\right)
algebra_1
$$\sqrt{a2+b 2}$$
\sqrt{a^2+b^2}
algebra_2
$$\left ( \frac{a}{b}\right )^{n}= \frac{a{n}}{b {n}}$$
\left ( \frac{a}{b}\right )^{n}= \frac{a^{n}}{b^{n}}
algebra_3
$$\frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd}$$
\frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd}
algebra_4
$$\frac{x{2}}{a {2}}-\frac{y{2}}{b {2}}=1$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
algebra_5
$$\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0$$
\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0
algebra_6
$$\sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n}$$
\sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n}
algebra_7
$$x ={-b \pm \sqrt{b^2-4ac}\over 2a}$$
x ={-b \pm \sqrt{b^2-4ac}\over 2a}
algebra_8
$$y-y_{1}=k \left( x-x_{1}\right)$$
y-y_{1}=k \left( x-x_{1}\right)
algebra_9
$$\left{\begin{matrix} x=a + r\text{cos}\theta \ y=b + r\text{sin}\theta \end{matrix}\right.$$
\left\{\begin{matrix} x=a + r\text{cos}\theta \\ y=b + r\text{sin}\theta \end{matrix}\right.
algebra_10
$$\begin{array}{l} \text{对于方程形如:}x^{3}-1=0 \ \text{设}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \ x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \ x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2} \end{array}$$
\begin{array}{l} \text{对于方程形如:}x^{3}-1=0 \\ \text{设}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \\ x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \\ x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2} \end{array}
algebra_11
$$\begin{array}{l} a\mathop\nolimits^2+bx+c=0 \ \Delta =\mathop\nolimits^2-4ac \ \left{\begin{matrix} \Delta \gt 0\text{方程有两个不相等的实根} \ \Delta = 0\text{方程有两个不相等的实根} \ \Delta \lt 0\text{方程有两个不相等的实根} \end{matrix}\right. \end{array}$$
\begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \left\{\begin{matrix} \Delta \gt 0\text{方程有两个不相等的实根} \\ \Delta = 0\text{方程有两个不相等的实根} \\ \Delta \lt 0\text{方程有两个不相等的实根} \end{matrix}\right. \end{array}
algebra_12
几何
tag
latex
descript
$$\Delta A B C$$
\Delta A B C
geometry_1
$$a \parallel c,b \parallel c \Rightarrow a \parallel b$$
a \parallel c,b \parallel c \Rightarrow a \parallel b
geometry_2
$$l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta$$
l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta
geometry_3
$$\left.\begin{matrix} a \perp \alpha \ b \perp \alpha \end{matrix}\right}\Rightarrow a \parallel b$$
\left.\begin{matrix} a \perp \alpha \\ b \perp \alpha \end{matrix}\right\}\Rightarrow a \parallel b
geometry_4
$$P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l$$
P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l
geometry_5
$$\alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta$$
\alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta
geometry_6
$$\left.\begin{matrix} a \subset \beta ,b \subset \beta ,a \cap b=P \ a \parallel \partial ,b \parallel \partial \end{matrix}\right}\Rightarrow \beta \parallel \alpha$$
\left.\begin{matrix} a \subset \beta ,b \subset \beta ,a \cap b=P \\ a \parallel \partial ,b \parallel \partial \end{matrix}\right\}\Rightarrow \beta \parallel \alpha
geometry_7
$$\alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b$$
\alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b
geometry_8
$$A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha$$
A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha
geometry_9
$$\left.\begin{matrix} m \subset \alpha ,n \subset \alpha ,m \cap n=P \ a \perp m,a \perp n \end{matrix}\right}\Rightarrow a \perp \alpha$$
\left.\begin{matrix} m \subset \alpha ,n \subset \alpha ,m \cap n=P \\ a \perp m,a \perp n \end{matrix}\right\}\Rightarrow a \perp \alpha
geometry_10
$$\begin{array}{c} \text{直角三角形中,直角边长a,b,斜边边长c} \ a{2}+b {2}=c^{2} \end{array}$$
\begin{array}{c} \text{直角三角形中,直角边长a,b,斜边边长c} \\ a^{2}+b^{2}=c^{2} \end{array}
geometry_11
不等式
tag
latex
descript
$$a > b,b > c \Rightarrow a > c$$
a > b,b > c \Rightarrow a > c
inequality_1
$$a > b,c > d \Rightarrow a+c > b+d$$
a > b,c > d \Rightarrow a+c > b+d
inequality_2
$$a > b > 0,c > d > 0 \Rightarrow ac bd$$
a > b > 0,c > d > 0 \Rightarrow ac bd
inequality_3
$$\begin{array}{c} a \gt b,c \gt 0 \Rightarrow ac \gt bc \ a \gt b,c \lt 0 \Rightarrow ac \lt bc \end{array}$$
\begin{array}{c} a \gt b,c \gt 0 \Rightarrow ac \gt bc \\ a \gt b,c \lt 0 \Rightarrow ac \lt bc \end{array}
inequality_4
$$\left
a-b \right
\geqslant \left
$$-\left
a \right
\leq a\leqslant \left
$$\left
a \right
\leqslant b \Rightarrow -b \leqslant a \leqslant \left
$$\left
a+b \right
\leqslant \left
$$\begin{array}{c} a \gt b \gt 0,n \in N^{\ast},n \gt 1 \ \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b} \end{array}$$
\begin{array}{c} a \gt b \gt 0,n \in N^{\ast},n \gt 1 \\ \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b} \end{array}
inequality_9
$$\left( \sum_{k=1}^n a_k b_k \right)^{!!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
inequality_10
$$\begin{array}{c} a,b \in R^{+} \ \Rightarrow \frac{a+b}2\ge \sqrt{ab} \ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array}$$
\begin{array}{c} a,b \in R^{+} \\ \Rightarrow \frac{a+b}{{2}}\ge \sqrt{ab} \\ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array}
inequality_11
$$\begin{array}{c} a,b \in R \ \Rightarrow a{2}+b {2}\gt 2ab \ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array}$$
\begin{array}{c} a,b \in R \\ \Rightarrow a^{2}+b^{2}\gt 2ab \\ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array}
inequality_12
$$\begin{array}{c} H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \ Q_{n}=\sqrt{\sum \limits_{i=1}{n}x_{i} {2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} \end{array}$$
\begin{array}{c} H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \\ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \\ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \\ Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \\ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} \end{array}
inequality_13
积分
tag
latex
descript
$$\frac{\mathrm{d}}{\mathrm{d}x}xn=nx {n-1}$$
\frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1}
calculous_1
$$\frac{\mathrm{d}}{\mathrm{d}x}e{ax}=a,e {ax}$$
\frac{\mathrm{d}}{\mathrm{d}x}e^{ax}=a\,e^{ax}
calculous_2
$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x}$$
\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x}
calculous_3
$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x$$
\frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x
calculous_4
$$\frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x$$
\frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x
calculous_5
$$\int k\mathrm{d}x = kx+C$$
\int k\mathrm{d}x = kx+C
calculous_6
$$\frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x$$
\frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x
calculous_7
$$\frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x$$
\frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x
calculous_8
$$\int \frac{1}{x}\mathrm{d}x= \ln \left
x \right
+C$$
$$\int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C$$
\int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C
calculous_10
$$\int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C$$
\int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C
calculous_11
$$\int u \frac{\mathrm{d}v}{\mathrm{d}x},\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v,\mathrm{d}x$$
\int u \frac{\mathrm{d}v}{\mathrm{d}x}\,\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v\,\mathrm{d}x
calculous_12
$$f(x) = \int_{-\infty}^\infty \hat f(x)\xi,e^{2 \pi i \xi x} ,\mathrm{d}\xi$$
f(x) = \int_{-\infty}^\infty \hat f(x)\xi\,e^{2 \pi i \xi x} \,\mathrm{d}\xi
calculous_13
$$\int x{\mu}\mathrm{d}x=\frac{x {\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right)$$
\int x^{\mu}\mathrm{d}x=\frac{x^{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right)
calculous_14
矩阵
tag
latex
descript
$$\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
array_1
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}
array_2
$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \ \vdots & \ddots & \vdots \ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$
\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}
array_3
$$\begin{array}{c} A=A^{T} \ A=-A^{T} \end{array}$$
\begin{array}{c} A=A^{T} \\ A=-A^{T} \end{array}
array_4
$$O = \begin{bmatrix} 0 & 0 & \cdots & 0 \ 0 & 0 & \cdots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & 0 \end{bmatrix}$$
O = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}
array_5
$$A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \ a_{21}& a_{22}& \cdots & a_{2n} \ \vdots & \vdots & \ddots & \vdots \ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} =\left [ a_{ij}\right ]$$
A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} =\left [ a_{ij}\right ]
array_6
$$\begin{array}{c} A={\left[ a_{ij}\right]{m \times n}},B={\left[ b {ij}\right]{n \times s}} \ c {ij}= \sum \limits_{k=1}^a_{ik}b_{kj} \ C=AB=\left[ c_{ij}\right]{m \times s} = \left[ \sum \limits {k=1}^{n}a_{ik}b_{kj}\right]_{m \times s} \end{array}$$
\begin{array}{c} A={\left[ a_{ij}\right]_{m \times n}},B={\left[ b_{ij}\right]_{n \times s}} \\ c_{ij}= \sum \limits_{k=1}^{{n}}a_{ik}b_{kj} \\ C=AB=\left[ c_{ij}\right]_{m \times s} = \left[ \sum \limits_{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s} \end{array}
array_7
$$\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}& \mathbf{j}& \mathbf{k} \ \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \ \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \ \end{vmatrix}$$
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}& \mathbf{j}& \mathbf{k} \\ \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \\ \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \\ \end{vmatrix}
array_8
三角
tag
latex
descript
$$e^{i \theta}$$
e^{i \theta}
trigonometry_1
$$\left(\frac{\pi}{2}-\theta \right )$$
\left(\frac{\pi}{2}-\theta \right )
trigonometry_2
$$\text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2}$$
\text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2}
trigonometry_3
$$\text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2}$$
\text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2}
trigonometry_4
$$\text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha}$$
\text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha}
trigonometry_5
$$\sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$
\sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}
trigonometry_6
$$\sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$
\sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}
trigonometry_7
$$\cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$
\cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}
trigonometry_8
$$\cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$
\cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}
trigonometry_9
$$a{2}=b {2}+c^{2}-2bc\cos A$$
a^{2}=b^{2}+c^{2}-2bc\cos A
trigonometry_10
$$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R}$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R}
trigonometry_11
$$\sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha$$
\sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha
trigonometry_12
$$\sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha$$
\sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha
trigonometry_13
统计
tag
latex
descript
$$C_{r}^{n}$$
C_{r}^{n}
statistics_1
$$\frac{n!}{r!(n-r)!}$$
\frac{n!}{r!(n-r)!}
statistics_2
$$\sum_{i=1}^{n}{X_i}$$
\sum_{i=1}^{n}{X_i}
statistics_3
$$\sum_{i=1}{n}{X_i 2}$$
\sum_{i=1}^{n}{X_i^2}
statistics_4
$$X_1, \cdots,X_n$$
X_1, \cdots,X_n
statistics_5
$$\frac{x-\mu}{\sigma}$$
\frac{x-\mu}{\sigma}
statistics_6
$$\sum_{i=1}^{n}{(X_i - \overline{X})^2}$$
\sum_{i=1}^{n}{(X_i - \overline{X})^2}
statistics_7
$$\begin{array}{c} \text{若}P \left( AB \right) =P \left( A \right) P \left( B \right) \ \text{则}P \left( A \left
B\right. \right) =P \left({B}\right) \end{array}$$
\begin{array}{c} \text{若}P \left( AB \right) =P \left( A \right) P \left( B \right) \\ \text{则}P \left( A \left| B\right. \right) =P \left({B}\right) \end{array}
$$P(E) ={n \choose k}p^k (1-p)^{n-k}$$
P(E) ={n \choose k}p^k (1-p)^{n-k}
statistics_9
$$P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right )$$
P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right )
statistics_10
$$P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) = \prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)}$$
P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) = \prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)}
statistics_11
$$\begin{array}{c} P \left( \emptyset \right) =0 \ P \left( S \right) =1 \end{array}$$
\begin{array}{c} P \left( \emptyset \right) =0 \\ P \left( S \right) =1 \end{array}
statistics_12
$$\begin{array}{c} \forall A \in S \ P \left( A \right) \ge 0 \end{array}$$
\begin{array}{c} \forall A \in S \\ P \left( A \right) \ge 0 \end{array}
statistics_13
$$P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) = \prod \limits_{i=1}^{n}P \left( A_{i}\right)$$
P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) = \prod \limits_{i=1}^{n}P \left( A_{i}\right)
statistics_14
$$\begin{array}{c} S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \ P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}} \end{array}$$
\begin{array}{c} S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \\ P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}} \end{array}
statistics_15
$$\begin{array}{c} P_{n}=n! \ A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.} \end{array}$$
\begin{array}{c} P_{n}=n! \\ A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.} \end{array}
statistics_16
数列
tag
latex
descript
$$a_{n}=a_{1}q^{n-1}$$
a_{n}=a_{1}q^{n-1}
sequence_1
$$a_{n}=a_{1}+ \left( n-1 \left) d\right. \right.$$
a_{n}=a_{1}+ \left( n-1 \left) d\right. \right.
sequence_2
$$S_{n}=na_{1}+\frac{n \left( n-1 \right)}2d$$
S_{n}=na_{1}+\frac{n \left( n-1 \right)}{{2}}d
sequence_3
$$S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2}$$
S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2}
sequence_4
$$\frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right)$$
\frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right)
sequence_5
$$\frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right)$$
\frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right)
sequence_6
$$\frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right)$$
\frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right)
sequence_7
$$\frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}}$$
\frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}}
sequence_8
$$\begin{array}{c} \text{若}\left {a_{n}\right }、\left {b_{n}\right }\text{为等差数列}, \ \text{则}\left {a_{n}+ b_{n}\right }\text{为等差数列} \end{array}$$
\begin{array}{c} \text{若}\left \{a_{n}\right \}、\left \{b_{n}\right \}\text{为等差数列}, \\ \text{则}\left \{a_{n}+ b_{n}\right \}\text{为等差数列} \end{array}
sequence_9
$$(1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots$$
(1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots
sequence_10
物理
tag
latex
descript
$${E_p} = -\frac{r}$$
{E_p} = -\frac{{GMm}}{r}
physics_4
$$\oint_L { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup}} \over E} } \cdot { \rm{d}} \mathord{ \buildrel{ \lower3pt \hbox{ \scriptscriptstyle \rightharpoonup}} \over l} = 0$
\oint_L { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} } \cdot { \rm{d}} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l} = 0
physics_6
$$d \vec{F}= Id \vec{l} \times \vec{B}$$
d \vec{F}= Id \vec{l} \times \vec{B}
physics_8
$$Q = I ^ { 2 } R \mathrm { t }$$
Q = I ^ { 2 } R \mathrm { t }
physics_13
$${E_k} = hv - {W_0}$$
{E_k} = hv - {W_0}
physics_15
$${y_0} = A \cos ( \omega {t} + { \varphi _0})$$
{y_0} = A \cos ( \omega {t} + { \varphi _0})
physics_19
化学
tag
latex
descript
$$\ce{SO4^2- + Ba^2+ -> BaSO4 v}$$
%此公式需要在【设置】中开启mhchem扩展支持 具体用法请参考【帮助】2.11.2 \ce{SO4^2- + Ba^2+ -> BaSO4 v}
需要Mhchem扩展支持
$$\ce{A v B (v) -> B ^ B (^)}$$
%此公式需要在【设置】中开启mhchem扩展支持 具体用法请参考【帮助】2.11.2 \ce{A v B (v) -> B ^ B (^)}
需要Mhchem扩展支持
$$\ce{Hg^2+ ->[I-] \underset{\mathrm{red}}{\ce{HgI2}} ->[I-] \underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}}$$
%此公式需要在【设置】中开启mhchem扩展支持 具体用法请参考【帮助】2.11.2 \ce{Hg^2+ ->[I-] $\underset{\mathrm{red}}{\ce{HgI2}}$ ->[I-] $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$}
需要Mhchem扩展支持
$$\ce{Zn^2+ <=>[+ 2OH-][+ 2H+] \underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}} <=>[+ 2OH-][+ 2H+] \underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}}$$
%此公式需要在【设置】中开启mhchem扩展支持 具体用法请参考【帮助】2.11.2 \ce{Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$ <=>[+ 2OH-][+ 2H+] $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$}
需要Mhchem扩展支持