#include <cstdio> #include <iostream> #include "ceres/ceres.h" #include "ceres/rotation.h"
class BALProblem { public: ~BALProblem() { delete[] point_index_; delete[] camera_index_; delete[] observations_; delete[] parameters_; } int num_observations() const { return num_observations_; } const double* observations() const { return observations_; } double* mutable_cameras() { return parameters_; } double* mutable_points() { return parameters_ + 9 * num_cameras_; } double* mutable_camera_for_observation(int i) { return mutable_cameras() + camera_index_[i] * 9; } double* mutable_point_for_observation(int i) { return mutable_points() + point_index_[i] * 3; } bool LoadFile(const char* filename) { FILE* fptr = fopen(filename, "r"); if (fptr == NULL) { return false; }; FscanfOrDie(fptr, "%d", &num_cameras_); FscanfOrDie(fptr, "%d", &num_points_); FscanfOrDie(fptr, "%d", &num_observations_); point_index_ = new int[num_observations_]; camera_index_ = new int[num_observations_]; observations_ = new double[2 * num_observations_]; num_parameters_ = 9 * num_cameras_ + 3 * num_points_; parameters_ = new double[num_parameters_]; for (int i = 0; i < num_observations_; ++i) { FscanfOrDie(fptr, "%d", camera_index_ + i); FscanfOrDie(fptr, "%d", point_index_ + i); for (int j = 0; j < 2; ++j) { FscanfOrDie(fptr, "%lf", observations_ + 2*i + j); } } for (int i = 0; i < num_parameters_; ++i) { FscanfOrDie(fptr, "%lf", parameters_ + i); } return true; } private: template<typename T> void FscanfOrDie(FILE *fptr, const char *format, T *value) { int num_scanned = fscanf(fptr, format, value); if (num_scanned != 1) { LOG(FATAL) << "Invalid UW data file."; } } int num_cameras_; int num_points_; int num_observations_; int num_parameters_; int* point_index_; int* camera_index_; double* observations_; double* parameters_; };
struct SnavelyReprojectionError { SnavelyReprojectionError(double observed_x, double observed_y) : observed_x(observed_x), observed_y(observed_y) {} template <typename T> bool operator()(const T* const camera, const T* const point, T* residuals) const {
T p[3]; ceres::AngleAxisRotatePoint(camera, point, p); p[0] += camera[3]; p[1] += camera[4]; p[2] += camera[5]; T xp = - p[0] / p[2]; T yp = - p[1] / p[2]; const T& l1 = camera[7]; const T& l2 = camera[8]; T r2 = xp*xp + yp*yp; T distortion = 1.0 + r2 * (l1 + l2 * r2); const T& focal = camera[6]; T predicted_x = focal * distortion * xp; T predicted_y = focal * distortion * yp; residuals[0] = predicted_x - observed_x; residuals[1] = predicted_y - observed_y; return true; } static ceres::CostFunction* Create(const double observed_x, const double observed_y) { return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>( new SnavelyReprojectionError(observed_x, observed_y))); } double observed_x; double observed_y; }; int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); if (argc != 2) { std::cerr << "usage: simple_bundle_adjuster <bal_problem>\n"; return 1; } BALProblem bal_problem; if (!bal_problem.LoadFile(argv[1])) { std::cerr << "ERROR: unable to open file " << argv[1] << "\n"; return 1; } const double* observations = bal_problem.observations(); ceres::Problem problem; for (int i = 0; i < bal_problem.num_observations(); ++i) { ceres::CostFunction* cost_function = SnavelyReprojectionError::Create(observations[2 * i + 0], observations[2 * i + 1]); problem.AddResidualBlock(cost_function, NULL , bal_problem.mutable_camera_for_observation(i), bal_problem.mutable_point_for_observation(i)); } ceres::Solver::Options options; options.linear_solver_type = ceres::DENSE_SCHUR; options.minimizer_progress_to_stdout = true; ceres::Solver::Summary summary; ceres::Solve(options, &problem, &summary); std::cout << summary.FullReport() << "\n"; return 0; }
|