import cv2 import numpy as np import matplotlib.pyplot as plt img_file = "credit_card.png" tem_file = "reference.png" img = cv2.imread(img_file) tem = cv2.imread(tem_file) def tem_process(img): img_cpy = img.copy() gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,binary = cv2.threshold(gray,10,255,cv2.THRESH_BINARY_INV) contours,hierarchy = cv2.findContours(binary.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) temp_index_list = {} digits_template = {} for i,contour in enumerate(contours): x,y,w,h=cv2.boundingRect(contour) temp_index_list[x] = {'i':i,'pos':(x,y,w,h)} keys = list(temp_index_list.keys()) keys.sort() for i,k in enumerate(keys): contour = temp_index_list[k].get("pos") x,y,w,h = contour digits_template[i] = cv2.resize(binary[y:y+h,x:x+w],(57,88)) return digits_template digits = tem_process(tem)
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3)) sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
image = cv2.resize(img,(300,int(img.shape[0]*(300/img.shape[1])),)) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0,ksize=-1) gradX = np.absolute(gradX) (minVal, maxVal) = (np.min(gradX), np.max(gradX)) gradX = (255 * ((gradX - minVal) / (maxVal - minVal))) gradX = gradX.astype("uint8")
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
thresh = cv2.threshold(gradX, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) cnts = threshCnts cur_img = image.copy() cv2.drawContours(cur_img,cnts,-1,(0,0,255),3) locs = [] concour_img = image.copy()
for (i, c) in enumerate(cnts): (x, y, w, h) = cv2.boundingRect(c) ar = w / float(h) if ar > 2.5 and ar < 4.0: if (w > 40 and w < 55) and (h > 10 and h < 20): locs.append((x, y, w, h)) cv2.rectangle(concour_img,(x,y),(x+w,y+h),(255,0,0))
locs = sorted(locs, key=lambda x:x[0]) output = []
for (i, (gX, gY, gW, gH)) in enumerate(locs): groupOutput = [] group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5] group = cv2.threshold(group, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) digits_x=[] for c in digitCnts: (x, y, w, h) = cv2.boundingRect(c) digits_x.append(x) indexs = np.argsort(digits_x) c_digits = [digitCnts[c] for c in indexs] for c in c_digits: (x, y, w, h) = cv2.boundingRect(c) roi = group[y:y + h, x:x + w] roi = cv2.resize(roi, (57, 88))
scores = [] for (digit, digitROI) in digits.items(): result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF) (_, score, _, _) = cv2.minMaxLoc(result) scores.append(score) groupOutput.append(str(np.argmax(scores))) cv2.rectangle(image, (gX - 5, gY - 5), (gX + gW + 5, gY + gH + 5), (0, 0, 255), 1) cv2.putText(image, "".join(groupOutput), (gX, gY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2) output.extend(groupOutput)
print("Credit Card #: {}".format("".join(output))) plt.imshow(image)
|